语义分割系列25-BiSeNetV2(pytorch实现)

继BiSeNetV1之后(语义分割系列16-BiSeNetV1),BiSeNetV2在2021年IJCV上发布。

论文链接:BiSeNetV2

相比于V1版本,V2版本在下采样策略、卷积类型、特征融合等方面做了诸多改进。

本文将介绍:

  • BiSeNetV2如何设计Semantic Branch和Detail Branch。
  • BiSeNetV2如何设计Aggregation Layer完成特征融合。
  • BiSeNetV2如何设计Auxiliary Loss来帮助模型训练。
  • BiSeNetV2的代码实现与应用。

目录

论文部分

引文

模型

Backbone-Detail Branch

Backbone-Semantic Branch

Aggregation Layer

分割头SegHead

Booster(auxiliary Loss)

BiSeNetV2实现以及在Camvid上应用

BiSeNetV2实现

Camvid dataset

Train

Result

论文部分

引文

BiSeNetV1版本的双路分割结构在实时分割的任务中取得了不错的效果,这种网络结构能够保留低级细节和高级语义,同时又不会损害推理速度,很好的权衡了实现准确的语义分割任务和快速的推理速度之间的平衡。

因此,提出了基于双路的分段网络-BiSeNetV2来实现实时的语义分割。

相比于初版BiSeNetV1:

  • V2简化了原始结构,使网络更加高效
  • 使用更加紧凑的网络结构以及精心设计的组件,加深了Semantic Branch的网络,使用更加轻巧的深度可分离卷积来加速模型。
  • 设计了更为有效的Aggregation Layer,以增强Semantic Branch和Detail Branch之间的链接。

语义分割系列25-BiSeNetV2(pytorch实现)

模型

首先看模型的整体结构:

语义分割系列25-BiSeNetV2(pytorch实现)
图1 BiSeNetV2模型结构

 BiSeNetV2主要包含几个结构:

  1. 紫色框(backbone)内的双路分支,上为Detail Branch分支,下为Semantic Branch分支。
  2. 橙色框(Aggregation Layer)内的Aggregation Layer聚合层。
  3. 黄色框(Booster)内的Auxiliary Loss分支。

首先,我们先介绍紫色框backbone部分。

Backbone-Detail Branch

对于Detail Branch,依旧使用类VGG的网络结构,这一部分结构较为简单,用于快速下采样并得到细分的feature map。

代码部分如下:

import torch
import torch.nn as nn
class DetailBranch(nn.Module):
    def __init__(self, detail_channels=(64, 64, 128), in_channels=3):
        super(DetailBranch, self).__init__()
        self.detail_branch = nn.ModuleList()

        for i in range(len(detail_channels)):
            if i == 0:
                self.detail_branch.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),
                    )
                )
            else:
                self.detail_branch.append(
                    nn.Sequential(
                        nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU()
                        )
                    )


    def forward(self, x):
        for stage in self.detail_branch:
            x = stage(x)
        return x

if __name__ == "__main__":
    x = torch.randn(3, 3, 224, 224)
    net = DetailBranch(detail_channels=(64, 64, 128), in_channels=3)
    out = net(x)
    print(out.shape)

Backbone-Semantic Branch

Semantic Branch与Detail Branch平行,主要用于捕获高级语义信息。在这一个分支中,通道数比较少,因为更多信息可以由Detail Branch提供。由于获取高级语义信息需要上下文的依赖和较大的感受野,所以,在这一个分支中,使用快速采样的策略来迅速扩大感受野;使用全局平均池化来嵌入上下文信息。

作者在这部分做了较为精心的设计,主要包括三部分:

  1. Stem Block用于快速下采样;
  2. Gather-and-Expansion Layer(GE Layer)用于卷积获取细节信息。
  3. Context Embedding Block(CE Layer)用于嵌入上下文信息。

Stem Block 和CE Block结构

Stem Block和CE Block的结构较为简单。

Stem Block 和CE Block结构
图2 Stem Block 和CE Block结构

代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F

class StemBlock(nn.Module):
    def __init__(self, in_channels=3, out_channels=16):
        super(StemBlock, self).__init__()

        self.conv_in = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )
        
        self.conv_branch = nn.Sequential(
            nn.Conv2d(out_channels, out_channels//2, 1),
            nn.BatchNorm2d(out_channels//2),
            nn.ReLU(),            
            nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        ) 

        self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)

        self.fusion = nn.Sequential(
            nn.Conv2d(2*out_channels, out_channels, 3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.conv_in(x)

        x_branch = self.conv_branch(x)
        x_downsample = self.pool(x)
        out = torch.cat([x_branch, x_downsample], dim=1)
        out = self.fusion(out)

        return out
        
if __name__ == "__main__":
    x = torch.randn(3, 3, 224, 224)
    net = StemBlock()
    out = net(x)
    print(out.shape)
class CEBlock(nn.Module):
    def __init__(self,in_channels=16, out_channels=16):
        super(CEBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.gap = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的
            # nn.BatchNorm2d(self.in_channels)
            )

        self.conv_gap = nn.Sequential(
            nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0),
            # nn.BatchNorm2d(self.out_channels), 同上
            nn.ReLU()
            )

        # Note: in paper here is naive conv2d, no bn-relu
        self.conv_last = nn.Conv2d(
            in_channels=self.out_channels,
            out_channels=self.out_channels,
            kernel_size=3,
            stride=1,
            padding=1)

    def forward(self, x):
        identity = x
        x = self.gap(x)
        x = self.conv_gap(x)
        x = identity + x
        x = self.conv_last(x)
        return x

if __name__ == "__main__":
    x = torch.randn(1, 16, 224, 224)
    net = CEBlock()
    out = net(x)
    print(out.shape)

GE Block结构

语义分割系列25-BiSeNetV2(pytorch实现)
图3 GE Block结构(b,c)

对于GE Block,分为是否进行下采样两个模块,不进行下采样的GE Block(b)和进行下采样的GE Block。作者在这里借鉴了MobileNetv2中的倒瓶颈结构设计,为了减少计算量,中间使用一个深度可分离卷积。

下面给出GE Block的代码:

import torch
import torch.nn as nn
class depthwise_separable_conv(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(depthwise_separable_conv, self).__init__()
        self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels)
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        out = self.depthwise(x)
        out = self.pointwise(out)
        return out


class GELayer(nn.Module):
    def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1):
        super(GELayer, self).__init__()
        mid_channel = in_channels * exp_ratio
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1),
            nn.BatchNorm2d(in_channels),
            nn.ReLU()
            )

        if stride == 1:
            self.dwconv = nn.Sequential(
                # ReLU in ConvModule not shown in paper
                nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels),
                nn.BatchNorm2d(mid_channel),
                nn.ReLU(),

                depthwise_separable_conv(mid_channel, mid_channel, stride=1),
                nn.BatchNorm2d(mid_channel),
                )
            self.shortcut = None
        else:
            self.dwconv = nn.Sequential(
                nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False),
                nn.BatchNorm2d(mid_channel),
                nn.ReLU(),
                
                # ReLU in ConvModule not shown in paper
                depthwise_separable_conv(mid_channel, mid_channel, stride=stride),
                nn.BatchNorm2d(mid_channel),       
                
                depthwise_separable_conv(mid_channel, mid_channel, stride=1),
                nn.BatchNorm2d(mid_channel),
            )

            self.shortcut = nn.Sequential(
                depthwise_separable_conv(in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels),

                nn.Conv2d(out_channels, out_channels, 1),
                nn.BatchNorm2d(out_channels),
                )

        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False),
            nn.BatchNorm2d(out_channels)
            )

        self.act = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv1(x)
        x = self.dwconv(x)
        x = self.conv2(x)

        if self.shortcut is not None:
            shortcut = self.shortcut(identity)
            x = x + shortcut
        else:
            x = x + identity
        x = self.act(x)
        return x


if __name__ == "__main__":
    x = torch.randn(3, 16, 224, 224)
    net = GELayer(in_channels=16, out_channels=16, stride=2)
    out = net(x)
    print(out.shape)

Semantic Branch的代码:

class SemanticBranch(nn.Module):
    def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6):
        super(SemanticBranch, self).__init__()
        self.in_channels = in_channels
        self.semantic_channels = semantic_channels
        self.semantic_stages = nn.ModuleList()
        
        for i in range(len(semantic_channels)):
            if i == 0:
                self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i]))

            elif i == (len(semantic_channels) - 1):
                self.semantic_stages.append(
                    nn.Sequential(
                        GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2),
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1),
                        
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1),
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1)
                        )
                    )

            else:
                self.semantic_stages.append(
                    nn.Sequential(
                        GELayer(semantic_channels[i - 1], semantic_channels[i],
                                exp_ratio, 2),
                        GELayer(semantic_channels[i], semantic_channels[i],
                                exp_ratio, 1)
                                )
                            )

        self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1]))



    def forward(self, x):
        semantic_outs = []
        for semantic_stage in self.semantic_stages:
            x = semantic_stage(x)
            semantic_outs.append(x)
        return semantic_outs

if __name__ == "__main__":
    x = torch.randn(3, 3, 224, 224)
    net = SemanticBranch()
    out = net(x)
    print(out[0].shape)
    print(out[1].shape)
    print(out[2].shape)
    print(out[3].shape)
    print(out[4].shape)


    # from torchsummary import summary
    # summary(net.cuda(), (3, 224, 224))

Aggregation Layer

Aggregation Layer接受了Detail Branch和Semantic Branch的结果,通过图4中的一系列操作进行特征融合。

语义分割系列25-BiSeNetV2(pytorch实现)
图4 Aggregation Layer结构

 代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F
class AggregationLayer(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(AggregationLayer, self).__init__()
        self.Conv_DetailBranch_1 = nn.Sequential(
            depthwise_separable_conv(in_channels, out_channels, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.Conv2d(out_channels, out_channels, 1)
        )
        
        self.Conv_DetailBranch_2 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.AvgPool2d(kernel_size=3, stride=2, padding=1),
        )
        
        self.Conv_SemanticBranch_1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True),
            nn.Sigmoid()
        )

        self.Conv_SemanticBranch_2 = nn.Sequential(
            depthwise_separable_conv(in_channels, out_channels, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.Conv2d(out_channels, out_channels, kernel_size=1),
            nn.Sigmoid()
        )

        self.conv_out = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
        )
        
    def forward(self, Detail_x, Semantic_x):
        DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x)
        DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x)

        SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x)
        SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x)

        out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1)
        out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2)
        out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True)

        out = torch.matmul(out_1, out_2)
        out = self.conv_out(out)
        return out

if __name__ == "__main__":
    Detail_x = torch.randn(3, 56, 224, 224)
    Semantic_x = torch.randn(3, 56, 224//4, 224//4)
    net = AggregationLayer(in_channels=56, out_channels=122)
    out = net(Detail_x, Semantic_x)
    print(out.shape)
    

分割头SegHead

检测头的实现比较简单。

语义分割系列25-BiSeNetV2(pytorch实现)

class SegHead(nn.Module):
    def __init__(self, channels, num_classes):
        super().__init__()
        self.cls_seg = nn.Sequential(
            nn.Conv2d(channels, channels, 3, padding=1),
            nn.BatchNorm2d(channels),
            nn.ReLU(),
            nn.Conv2d(channels, num_classes, 1),
        )

    def forward(self, x):
        return self.cls_seg(x)

Booster(auxiliary Loss)

作者在Semantic Branch中引出了几个Auxiliary Loss分支,对比了集中Auxiliary Loss组合的性能,得出如下结果。

语义分割系列25-BiSeNetV2(pytorch实现)

BiSeNetV2实现以及在Camvid上应用

BiSeNetV2实现

import torch
import torch.nn as nn
import torch.nn.functional as F

class StemBlock(nn.Module):
    def __init__(self, in_channels=3, out_channels=16):
        super(StemBlock, self).__init__()

        self.conv_in = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )
        
        self.conv_branch = nn.Sequential(
            nn.Conv2d(out_channels, out_channels//2, 1),
            nn.BatchNorm2d(out_channels//2),
            nn.ReLU(),            
            nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        ) 

        self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)

        self.fusion = nn.Sequential(
            nn.Conv2d(2*out_channels, out_channels, 3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.conv_in(x)

        x_branch = self.conv_branch(x)
        x_downsample = self.pool(x)
        out = torch.cat([x_branch, x_downsample], dim=1)
        out = self.fusion(out)

        return out
class depthwise_separable_conv(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(depthwise_separable_conv, self).__init__()
        self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels)
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        out = self.depthwise(x)
        out = self.pointwise(out)
        return out


class GELayer(nn.Module):
    def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1):
        super(GELayer, self).__init__()
        mid_channel = in_channels * exp_ratio
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1),
            nn.BatchNorm2d(in_channels),
            nn.ReLU()
            )

        if stride == 1:
            self.dwconv = nn.Sequential(
                # ReLU in ConvModule not shown in paper
                nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels),
                nn.BatchNorm2d(mid_channel),
                nn.ReLU(),

                depthwise_separable_conv(mid_channel, mid_channel, stride=1),
                nn.BatchNorm2d(mid_channel),
                )
            self.shortcut = None
        else:
            self.dwconv = nn.Sequential(
                nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False),
                nn.BatchNorm2d(mid_channel),
                nn.ReLU(),
                
                # ReLU in ConvModule not shown in paper
                depthwise_separable_conv(mid_channel, mid_channel, stride=stride),
                nn.BatchNorm2d(mid_channel),       
                
                depthwise_separable_conv(mid_channel, mid_channel, stride=1),
                nn.BatchNorm2d(mid_channel),
            )

            self.shortcut = nn.Sequential(
                depthwise_separable_conv(in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels),

                nn.Conv2d(out_channels, out_channels, 1),
                nn.BatchNorm2d(out_channels),
                )

        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False),
            nn.BatchNorm2d(out_channels)
            )

        self.act = nn.ReLU()

    def forward(self, x):
        identity = x
        x = self.conv1(x)
        x = self.dwconv(x)
        x = self.conv2(x)

        if self.shortcut is not None:
            shortcut = self.shortcut(identity)
            x = x + shortcut
        else:
            x = x + identity
        x = self.act(x)
        return x

class CEBlock(nn.Module):
    def __init__(self,in_channels=16, out_channels=16):
        super(CEBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.gap = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的。如果想开启BatchNorm,训练时batch size>1即可,测试时使用model.eval()即不会报错。
            # nn.BatchNorm2d(self.in_channels)
            )

        self.conv_gap = nn.Sequential(
            nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0),
            # nn.BatchNorm2d(self.out_channels), 同上
            nn.ReLU()
            )

        # Note: in paper here is naive conv2d, no bn-relu
        self.conv_last = nn.Conv2d(
            in_channels=self.out_channels,
            out_channels=self.out_channels,
            kernel_size=3,
            stride=1,
            padding=1)

    def forward(self, x):
        identity = x
        x = self.gap(x)
        x = self.conv_gap(x)
        x = identity + x
        x = self.conv_last(x)
        return x

class DetailBranch(nn.Module):
    def __init__(self, detail_channels=(64, 64, 128), in_channels=3):
        super(DetailBranch, self).__init__()
        self.detail_branch = nn.ModuleList()

        for i in range(len(detail_channels)):
            if i == 0:
                self.detail_branch.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),
                    )
                )
            else:
                self.detail_branch.append(
                    nn.Sequential(
                        nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU(),

                        nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1),
                        nn.BatchNorm2d(detail_channels[i]),
                        nn.ReLU()
                        )
                    )


    def forward(self, x):
        for stage in self.detail_branch:
            x = stage(x)
        return x

class SemanticBranch(nn.Module):
    def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6):
        super(SemanticBranch, self).__init__()
        self.in_channels = in_channels
        self.semantic_channels = semantic_channels
        self.semantic_stages = nn.ModuleList()
        
        for i in range(len(semantic_channels)):
            if i == 0:
                self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i]))

            elif i == (len(semantic_channels) - 1):
                self.semantic_stages.append(
                    nn.Sequential(
                        GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2),
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1),
                        
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1),
                        GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1)
                        )
                    )

            else:
                self.semantic_stages.append(
                    nn.Sequential(
                        GELayer(semantic_channels[i - 1], semantic_channels[i],
                                exp_ratio, 2),
                        GELayer(semantic_channels[i], semantic_channels[i],
                                exp_ratio, 1)
                                )
                            )

        self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1]))



    def forward(self, x):
        semantic_outs = []
        for semantic_stage in self.semantic_stages:
            x = semantic_stage(x)
            semantic_outs.append(x)
        return semantic_outs

class AggregationLayer(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(AggregationLayer, self).__init__()
        self.Conv_DetailBranch_1 = nn.Sequential(
            depthwise_separable_conv(in_channels, out_channels, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.Conv2d(out_channels, out_channels, 1)
        )
        
        self.Conv_DetailBranch_2 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.AvgPool2d(kernel_size=3, stride=2, padding=1),
        )
        
        self.Conv_SemanticBranch_1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True),
            nn.Sigmoid()
        )

        self.Conv_SemanticBranch_2 = nn.Sequential(
            depthwise_separable_conv(in_channels, out_channels, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.Conv2d(out_channels, out_channels, kernel_size=1),
            nn.Sigmoid()
        )

        self.conv_out = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
        )
        
    def forward(self, Detail_x, Semantic_x):
        DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x)
        DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x)

        SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x)
        SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x)

        out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1)
        out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2)
        out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True)

        out = torch.matmul(out_1, out_2)
        out = self.conv_out(out)
        return out

class SegHead(nn.Module):
    def __init__(self, channels, num_classes):
        super().__init__()
        self.cls_seg = nn.Sequential(
            nn.Conv2d(channels, channels, 3, padding=1),
            nn.BatchNorm2d(channels),
            nn.ReLU(),
            nn.Conv2d(channels, num_classes, 1),
        )

    def forward(self, x):
        return self.cls_seg(x)

class BiSeNetV2(nn.Module):
    def __init__(self,in_channels=3,
                detail_channels=(64, 64, 128), 
                semantic_channels=(16, 32, 64, 128), 
                semantic_expansion_ratio=6,
                aggregation_channels=128,
                out_indices=(0, 1, 2, 3, 4),
                num_classes = 3):
        super(BiSeNetV2, self).__init__()

        self.in_channels = in_channels
        self.detail_channels = detail_channels
        self.semantic_expansion_ratio = semantic_expansion_ratio
        self.semantic_channels = semantic_channels
        self.aggregation_channels = aggregation_channels
        self.out_indices = out_indices
        self.num_classes = num_classes
        
        self.detail = DetailBranch(detail_channels=self.detail_channels, in_channels=self.in_channels)
        self.semantic = SemanticBranch(semantic_channels=self.semantic_channels, in_channels=self.in_channels,exp_ratio=self.semantic_expansion_ratio)
        self.AggregationLayer = AggregationLayer(in_channels=self.aggregation_channels, out_channels=self.aggregation_channels)


        self.seg_head_aggre = SegHead(semantic_channels[-1], self.num_classes)
        self.seg_heads = nn.ModuleList()
        self.seg_heads.append(self.seg_head_aggre)
        for channel in semantic_channels:
            self.seg_heads.append(SegHead(channel, self.num_classes))



    def forward(self, x):
        _, _, h, w = x.size()
        x_detail = self.detail(x)
        x_semantic_lst = self.semantic(x)
        x_head = self.AggregationLayer(x_detail, x_semantic_lst[-1])
        outs = [x_head] + x_semantic_lst[:-1]
        outs = [outs[i] for i in self.out_indices]

        out = tuple(outs)

        seg_out = []
        for index, stage in enumerate(self.seg_heads):
            seg_out.append(F.interpolate(stage(out[index]),size=(h,w), mode="bilinear", align_corners=True))
        return seg_out

Camvid dataset

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
 
torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(448, 448),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
 
    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'database/camvid/camvid/' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    
train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)
 
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True,drop_last=True)

Train

model = BiSeNetV2(num_classes=33)


from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
import monai

# training loop 100 epochs
epochs_num = 100
# 选用SGD优化器来训练
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
schedule = monai.optimizers.LinearLR(optimizer, end_lr=0.05, num_iter=int(epochs_num*0.75))

# 损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)


def evaluate_accuracy_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()  # Set the model to evaluation mode
        if not device:
            device = next(iter(net.parameters())).device
    # No. of correct predictions, no. of predictions
    metric = d2l.Accumulator(2)

    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # Required for BERT Fine-tuning (to be covered later)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            output = net(X)
            pred = output[0]
            metric.add(d2l.accuracy(pred, y), d2l.size(y))
    return metric[0] / metric[1]


# 训练函数
def train_ch13(net, train_iter, test_iter, loss, optimizer, num_epochs, schedule, swa_start=swa_start, devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    # 用来保存一些训练参数

    loss_list = []
    train_acc_list = []
    test_acc_list = []
    epochs_list = []
    time_list = []
    lr_list = []
    

    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (X, labels) in enumerate(train_iter):
            timer.start()

            if isinstance(X, list):
                X = [x.to(devices[0]) for x in X]
            else:
                X = X.to(devices[0])
            gt = labels.long().to(devices[0])

            net.train()
            optimizer.zero_grad()
            result = net(X)
            pred = result[0]
            seg_loss = loss(result[0], gt)

            aux_loss_1 = loss(result[1], gt)
            aux_loss_2 = loss(result[2], gt)
            aux_loss_3 = loss(result[3], gt)
            aux_loss_4 = loss(result[4], gt)


            loss_sum = seg_loss + 0.2*aux_loss_1 + 0.2*aux_loss_2 + 0.2*aux_loss_3 + 0.2*aux_loss_4
            l = loss_sum
            loss_sum.sum().backward()
            optimizer.step()

            acc = d2l.accuracy(pred, gt)
            metric.add(l, acc, labels.shape[0], labels.numel())

            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None))
                
        if optimizer.state_dict()['param_groups'][0]['lr']>0.05:
            schedule.step()

        test_acc = evaluate_accuracy_gpu(net, test_iter)
        
        animator.add(epoch + 1, (None, None, test_acc))

        print(f"epoch {epoch+1}/{epochs_num} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- lr {optimizer.state_dict()['param_groups'][0]['lr']} --- cost time {timer.sum()}")
        
        #---------保存训练数据---------------
        df = pd.DataFrame()
        loss_list.append(metric[0] / metric[2])
        train_acc_list.append(metric[1] / metric[3])
        test_acc_list.append(test_acc)
        epochs_list.append(epoch+1)
        time_list.append(timer.sum())
        lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
        
        df['epoch'] = epochs_list
        df['loss'] = loss_list
        df['train_acc'] = train_acc_list
        df['test_acc'] = test_acc_list
        df["lr"] = lr_list
        df['time'] = time_list
        
        df.to_excel("savefile/BiseNetv2_camvid.xlsx")
        #----------------保存模型------------------- 
        if np.mod(epoch+1, 5) == 0:
            torch.save(net.state_dict(), f'checkpoints/BiseNetv2_{epoch+1}.pth')

    # 保存下最后的model
    torch.save(net.state_dict(), f'checkpoints/BiseNetv2_last.pth')

train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num, schedule=schedule)

Result

语义分割系列25-BiSeNetV2(pytorch实现)

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年2月25日
下一篇 2023年2月25日

相关推荐