内容
- 前言
- 0、导入需要的包和基本配置
- 1、设置opt参数
- 2、main函数
- 2.1、logging和wandb初始化
- 2.2、判断是否使用断点续训resume, 读取参数
- 2.3、DDP mode设置
- 2.4、不进化算法,正常训练
- 2.5、遗传进化算法,边进化边训练
- 3、train
- 3.1、载入参数
- 3.2、初始化参数和配置信息
- 3.3、model
- 3.4、优化器
- 3.5、学习率
- 3.6、训练前最后准备
- 3.7、数据加载
- 3.8、训练
- 3.9、结尾
- 4、run
- 总结
- Reference
前言
源码:YOLOv5源码.
导航:【YOLOV5-5.x 源码讲解】整体项目文件导航.
注释版全部项目文件已上传至GitHub:yolov5-5.x-annotations.
这个文件是yolov5的训练脚本。
0、导入需要的包和基本配置
import argparse # 解析命令行参数模块
import logging # 日志模块
import math # 数学公式模块
import os # 与操作系统进行交互的模块 包含文件路径操作和解析
import random # 生成随机数模块
import sys # sys系统模块 包含了与Python解释器和它的环境有关的函数
import time # 时间模块 更底层
import warnings # 发出警告信息模块
from copy import deepcopy # 深度拷贝模块
from pathlib import Path # Path将str转换为Path对象 使字符串路径易于操作的模块
from threading import Thread # 线程操作模块
import numpy as np # numpy数组操作模块
import torch.distributed as dist # 分布式训练模块
import torch.nn as nn # 对torch.nn.functional的类的封装 有很多和torch.nn.functional相同的函数
import torch.nn.functional as F # PyTorch函数接口 封装了很多卷积、池化等函数
import torch.optim as optim # PyTorch各种优化算法的库
import torch.optim.lr_scheduler as lr_scheduler # 学习率模块
import torch.utils.data # 数据操作模块
import yaml # 操作yaml文件模块
from torch.cuda import amp # PyTorch amp自动混合精度训练模块
from torch.nn.parallel import DistributedDataParallel as DDP # 多卡训练模块
from torch.utils.tensorboard import SummaryWriter # tensorboard模块
from tqdm import tqdm # 进度条模块
FILE = Path(__file__).absolute() # FILE = WindowsPath 'F:\yolo_v5\yolov5-U\detect.py'
# 将'F:/yolo_v5/yolov5-U'加入系统的环境变量 该脚本结束后失效
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
import val # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution, plot_lr_scheduler, plot_results_overlay
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness
# 初始化日志模块
logger = logging.getLogger(__name__)
# pytorch 分布式训练初始化
# https://pytorch.org/docs/stable/elastic/run.html
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # 这个 Worker 是这台机器上的第几个 Worker
RANK = int(os.getenv('RANK', -1)) # 这个 Worker 是全局第几个 Worker
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) # 总共有几个 Worker
1、设置opt参数
def parse_opt(known=False):
"""
weights: 权重文件
cfg: 模型配置文件 包括nc、depth_multiple、width_multiple、anchors、backbone、head等
data: 数据集配置文件 包括path、train、val、test、nc、names、download等
hyp: 初始超参文件
epochs: 训练轮次
batch-size: 训练批次大小
img-size: 输入网络的图片分辨率大小
resume: 断点续训, 从上次打断的训练结果处接着训练 默认False
nosave: 不保存模型 默认False(保存) True: only test final epoch
notest: 是否只测试最后一轮 默认False True: 只测试最后一轮 False: 每轮训练完都测试mAP
workers: dataloader中的最大work数(线程个数)
device: 训练的设备
single-cls: 数据集是否只有一个类别 默认False
rect: 训练集是否采用矩形训练 默认False
noautoanchor: 不自动调整anchor 默认False(自动调整anchor)
evolve: 是否进行超参进化 默认False
multi-scale: 是否使用多尺度训练 默认False
label-smoothing: 标签平滑增强 默认0.0不增强 要增强一般就设为0.1
adam: 是否使用adam优化器 默认False(使用SGD)
sync-bn: 是否使用跨卡同步bn操作,再DDP中使用 默认False
linear-lr: 是否使用linear lr 线性学习率 默认False 使用cosine lr
cache-image: 是否提前缓存图片到内存cache,以加速训练 默认False
image-weights: 是否使用图片采用策略(selection img to training by class weights) 默认False 不使用
bucket: 谷歌云盘bucket 一般用不到
project: 训练结果保存的根目录 默认是runs/train
name: 训练结果保存的目录 默认是exp 最终: runs/train/exp
exist-ok: 如果文件存在就ok不存在就新建或increment name 默认False(默认文件都是不存在的)
quad: dataloader取数据时, 是否使用collate_fn4代替collate_fn 默认False
save_period: Log model after every "save_period" epoch 默认-1 不需要log model 信息
artifact_alias: which version of dataset artifact to be stripped 默认lastest 貌似没用到这个参数?
local_rank: rank为进程编号 -1且gpu=1时不进行分布式 -1且多块gpu使用DataParallel模式
entity: wandb entity 默认None
upload_dataset: 是否上传dataset到wandb tabel(将数据集作为交互式 dsviz表 在浏览器中查看、查询、筛选和分析数据集) 默认False
bbox_interval: 设置界框图像记录间隔 Set bounding-box image logging interval for W&B 默认-1 opt.epochs // 10
"""
parser = argparse.ArgumentParser()
# --------------------------------------------------- 常用参数 ---------------------------------------------
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/VOC.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='True only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='True only test final epoch')
parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
# --------------------------------------------------- 数据增强参数 ---------------------------------------------
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', default=False, action='store_true', help='evolve hyperparameters')
parser.add_argument('--multi-scale', default=True, action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--linear-lr', default=False, action='store_true', help='linear LR')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', default=True, action='store_true', help='use weighted image selection for training')
# --------------------------------------------------- 其他参数 ---------------------------------------------
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, wins do not modify')
# --------------------------------------------------- 三个W&B(wandb)参数 ---------------------------------------------
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
# parser.parse_known_args()
# 作用就是当仅获取到基本设置时,如果运行命令中传入了之后才会获取到的其他配置,不会报错;而是将多出来的部分保存起来,留到后面使用
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
2、main函数
2.1、logging和wandb初始化
def main(opt):
# 1、logging和wandb初始化
# 日志初始化
set_logging(RANK)
if RANK in [-1, 0]:
# 输出所有训练opt参数 train: ...
print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
# 检查代码版本是否是最新的 github: ...
check_git_status()
# 检查requirements.txt所需包是否都满足 requirements: ...
check_requirements(exclude=['thop'])
# wandb logging初始化
wandb_run = check_wandb_resume(opt)
2.2、判断是否使用断点续训resume, 读取参数
使用断点续训 就从last.pt中读取相关参数;不使用断点续训 就从文件中读取相关参数
# 2、判断是否使用断点续训resume, 读取参数
if opt.resume and not wandb_run:
# 使用断点续训 就从last.pt中读取相关参数
# 如果resume是str,则表示传入的是模型的路径地址
# 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.pt
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' # check
# 相关的opt参数也要替换成last.pt中的opt参数
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
logger.info('Resuming training from %s' % ckpt) # print
else:
# 不使用断点续训 就从文件中读取相关参数
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
# 将opt.img_size扩展为[train_img_size, test_img_size]
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))
# opt.evolve=False,opt.name='exp' opt.evolve=True,opt.name='evolve'
opt.name = 'evolve' if opt.evolve else opt.name
# 根据opt.project生成目录 如: runs/train/exp18
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))
2.3、DDP mode设置
# 3、DDP mode设置
# 选择设备 cpu/cuda:0
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
# LOCAL_RANK != -1 进行多GPU训练
from datetime import timedelta
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
torch.cuda.set_device(LOCAL_RANK)
# 根据GPU编号选择设备
device = torch.device('cuda', LOCAL_RANK)
# 初始化进程组 distributed backend
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
2.4、不进化算法,正常训练
# 4、不使用进化算法 正常Train
if not opt.evolve:
# 如果不进行超参进化 那么就直接调用train()函数,开始训练
train(opt.hyp, opt, device)
# 如果是使用多卡训练, 那么销毁进程组
if WORLD_SIZE > 1 and RANK == 0:
_ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
2.5、遗传进化算法,边进化边训练
# 5、遗传进化算法,边进化边训练
# Evolve hyperparameters (optional)
# 否则使用超参进化算法(遗传算法) 求出最佳超参 再进行训练
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
# 超参进化列表 (突变规模, 最小值, 最大值)
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
with open(opt.hyp) as f:
hyp = yaml.safe_load(f) # 载入初始超参
assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # 超参进化后文件保存地址
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
"""
使用遗传算法进行参数进化 默认是进化300代
这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
有了每个hyp和每个hyp的权重之后有两种进化方式;
1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
evolve.txt会记录每次进化之后的results+hyp
每次进化时,hyp会根据之前的results进行从大到小的排序;
再根据fitness函数计算之前每次进化得到的hyp的权重
再确定哪一种进化方式,从而进行进化
"""
for _ in range(300): # generations to evolve
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
# 选择超参进化方式 只用single和weighted两种
parent = 'single' # parent selection method: 'single' or 'weighted'
# 加载evolve.txt
x = np.loadtxt('evolve.txt', ndmin=2)
# 选取至多前五次进化的结果
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
# 根据resluts计算hyp权重
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
# 根据不同进化方式获得base hyp
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate 超参进化
mp, s = 0.8, 0.2 # mutation probability 突变概率, sigma
npr = np.random
npr.seed(int(time.time()))
# 获取突变初始值
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
# 设置突变
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
# 将突变添加到base hyp上
# [i+7]是因为x中前7个数字为results的指标(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超参数hyp
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
# Constrain to limits 限制超参再规定范围
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
# 训练 使用突变后的参超 测试其效果
results = train(hyp.copy(), opt, device)
# Write mutation results
# 将结果写入results 并将对应的hyp写到evolve.txt evolve.txt中每一行为一次进化的结果
# 每行前七个数字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后为hyp
# 保存hyp到yaml文件
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
# Plot results
plot_evolution(yaml_file, Path(opt.save_dir))
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
3、train
3.1、载入参数
def train(hyp, opt, device):
"""
:params hyp: data/hyps/hyp.scratch.yaml hyp dictionary
:params opt: main中opt参数
:params device: 当前设备
"""
3.2、初始化参数和配置信息
初始化随机数种子 + opt参数 + 路径信息 + 超参设置保存 + 保存opt + 加载数据配置信息 + 打印日志信息(logger + wandb) + 其他参数(plots、cuda、nc、names、is_coco)
# ----------------------------------------------- 初始化参数和配置信息 ----------------------------------------------
# 设置一系列的随机数种子
init_seeds(1 + RANK)
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
opt.resume, opt.notest, opt.nosave, opt.workers
save_dir = Path(save_dir) # 保存训练结果的目录 如runs/train/exp18
wdir = save_dir / 'weights' # 保存权重路径 如runs/train/exp18/weights
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt' # runs/train/exp18/weights/last.pt
best = wdir / 'best.pt' # runs/train/exp18/weights/best.pt
results_file = save_dir / 'results.txt' # runs/train/exp18/results.txt
# Hyperparameters超参
if isinstance(hyp, str):
with open(hyp) as f:
hyp = yaml.safe_load(f) # load hyps dict 加载超参信息
# 日志输出超参信息 hyperparameters: ...
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
# Save run settings
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.safe_dump(hyp, f, sort_keys=False)
# 保存opt
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)
# Configure
# 是否需要画图: 所有的labels信息、前三次迭代的barch、训练结果等
plots = not evolve # create plots
cuda = device.type != 'cpu'
# data_dict: 加载VOC.yaml中的数据配置信息 dict
with open(data) as f:
data_dict = yaml.safe_load(f) # data dict
# Loggers
loggers = {'wandb': None, 'tb': None} # loggers dict
if RANK in [-1, 0]:
# TensorBoard
if not evolve:
prefix = colorstr('tensorboard: ') # 彩色打印信息
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
loggers['tb'] = SummaryWriter(str(save_dir))
# W&B wandb日志打印相关
opt.hyp = hyp # add hyperparameters
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
run_id = run_id if opt.resume else None # start fresh run if transfer learning
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
loggers['wandb'] = wandb_logger.wandb
if loggers['wandb']:
data_dict = wandb_logger.data_dict
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming
# nc: number of classes 数据集有多少种类别
nc = 1 if single_cls else int(data_dict['nc'])
# names: 数据集所有类别的名字
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check
# 当前数据集是否是coco数据集(80个类别) save_json和coco评价
is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
3.3、model
载入模型(预训练/不预训练) + 检查数据集 + 设置数据集路径参数(train_path、test_path) + 冻结权重层
# ============================================== 1、model =================================================
# 载入模型
pretrained = weights.endswith('.pt')
if pretrained:
# 使用预训练
# torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器
with torch_distributed_zero_first(RANK):
# 这里下载是去google云盘下载, 一般会下载失败,所以建议自行去github中下载再放到weights下
weights = attempt_download(weights) # download if not found locally
# 加载模型及参数
ckpt = torch.load(weights, map_location=device) # load checkpoint
# ????
# 这里加载模型有两种方式,一种是通过opt.cfg 另一种是通过ckpt['model'].yaml
# 区别在于是否使用resume 如果使用resume会将opt.cfg设为空,按照ckpt['model'].yaml来创建模型
# 这也影响了下面是否除去anchor的key(也就是不加载anchor), 如果resume则不加载anchor
# 原因: 保存的模型会保存anchors,有时候用户自定义了anchor之后,再resume,则原来基于coco数据集的anchor会自己覆盖自己设定的anchor
# 详情参考: https://github.com/ultralytics/yolov5/issues/459
# 所以下面设置intersect_dicts()就是忽略exclude
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
# 筛选字典中的键值对 把exclude删除
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # 载入模型权重
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else:
# 不使用预训练
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
# 检查数据集 如果本地没有则从torch库中下载并解压数据集
with torch_distributed_zero_first(RANK):
check_dataset(data_dict) # check
# 数据集参数
train_path = data_dict['train']
test_path = data_dict['val']
# 冻结权重层
# 这里只是给了冻结权重层的一个例子, 但是作者并不建议冻结权重层, 训练全部层参数, 可以得到更好的性能, 当然也会更慢
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
3.4、优化器
参数设置(nbs、accumulate、hyp[‘weight_decay’]) + 分组优化(pg0、pg1、pg2) + 选择优化器 + 为三个优化器选择优化方式 + 删除变量
# ============================================== 2、优化器 =================================================
# nbs 标称的batch_size,模拟的batch_size 比如默认的话上面设置的opt.batch_size=16 -> nbs=64
# 也就是模型梯度累计 64/16=4(accumulate) 次之后就更新一次模型 等于变相的扩大了batch_size
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
# 根据accumulate设置超参: 权重衰减参数
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") # 日志
# 将模型参数分为三组(weights、biases、bn)来进行分组优化
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
# 选择优化器 并设置pg0(bn参数)的优化方式
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
# 设置pg1(weights)的优化方式
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
# 设置pg2(biases)的优化方式
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
# 打印log日志 优化信息
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) # 日志
# 删除三个变量 优化代码
del pg0, pg1, pg2
3.5、学习率
线性学习率 + one cycle学习率 + 实例化 scheduler + 画出学习率变化曲线
# ============================================== 3、学习率 =================================================
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
if opt.linear_lr:
# 使用线性学习率
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
else:
# 使用one cycle 学习率 https://arxiv.org/pdf/1803.09820.pdf
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
# 实例化 scheduler
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=save_dir) # 画出学习率变化曲线
3.6、训练前最后准备
EMA + 使用预训练 + 参数设置(gs、nl、imgsz、imgsz_test) + DP + DDP + SyncBatchNorm
# ---------------------------------------------- 训练前最后准备 ------------------------------------------------------
# EMA
# 单卡训练: 使用EMA(指数移动平均)对模型的参数做平均, 一种给予近期数据更高权重的平均方法, 以求提高测试指标并增加模型鲁棒。
ema = ModelEMA(model) if RANK in [-1, 0] else None
# 使用预训练
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# EMA
if ema and ckpt.get('ema'):
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']
# Results
if ckpt.get('training_results') is not None:
results_file.write_text(ckpt['training_results']) # write results.txt
# Epochs
start_epoch = ckpt['epoch'] + 1
if resume:
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
# gs: 获取模型最大stride=32 [32 16 8]
gs = max(int(model.stride.max()), 32) # grid size (max stride)
# nl: 有多少个detect 3
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
# 获取训练图片和测试图片分辨率 imgsz=640 imgsz_test=640
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# 是否使用DP mode
# 如果rank=-1且gpu数量>1则使用DataParallel单机多卡模式 效果并不好(分布不平均)
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
model = torch.nn.DataParallel(model)
# 是否使用DDP mode
# 如果rank !=-1, 则使用DistributedDataParallel模式 真正的单机单卡(分布平均)
if cuda and RANK != -1:
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
# SyncBatchNorm 是否使用跨卡BN
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
3.7、数据加载
加载训练集dataloader、dataset + 参数(mlc、nb) + 加载验证集testloader + 如果不使用断点续训,设置labels相关参数(labels、c) ,plots可视化数据集labels信息,检查anchors(k-means + 遗传进化算法),model半精度
# ============================================== 4、数据加载 ===============================================
# Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
rank=RANK, workers=workers, image_weights=opt.image_weights,
quad=opt.quad, prefix=colorstr('train: '))
# 获取标签中最大类别值,与类别数作比较,如果小于类别数则表示有问题
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
nb = len(dataloader) # number of batches
# TestLoader
if RANK in [-1, 0]:
testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls,
hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1,
workers=workers, pad=0.5, prefix=colorstr('val: '))[0]
# 如果不使用断点续训
if not resume:
# 统计dataset的label信息
# [6301, 5] 数据集中有6301个target [:, class+x+y+w+h] nparray
labels = np.concatenate(dataset.labels, 0)
# 将labels从nparray转为tensor格式
c = torch.tensor(labels[:, 0])
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
# plots可视化数据集labels信息
plot_labels(labels, names, save_dir, loggers)
if loggers['tb']:
loggers['tb'].add_histogram('classes', c, 0) # 将统计结果加入TensorBoard
# Check Anchors
# 计算默认锚框anchor与数据集标签框的高宽比
# 标签的高h宽w与anchor的高h_a宽h_b的比值 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
# 如果bpr小于98%,则根据k-mean算法聚类新的锚框
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
model.half().float() # pre-reduce anchor precision
3.8、训练
设置/初始化一些训练要用的参数(hyp[‘box’]、hyp[‘cls’]、hyp[‘obj’]、hyp[‘label_smoothing’]、model.nc、model.hyp、model.gr、从训练样本标签得到类别权重model.class_weights、model.names、热身迭代的次数iterationsnw、last_opt_step、初始化maps和results、学习率衰减所进行到的轮次scheduler.last_epoch + 设置amp混合精度训练scaler + 初始化损失函数compute_loss + 打印日志信息) + 开始训练(注意五点:图片采样策略 + Warmup热身训练 + multi_scale多尺度训练 + amp混合精度训练 + accumulate 梯度更新策略) + 打印训练相关信息(包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等 + Plot 前三次迭代的barch的标签框再图片中画出来并保存 + wandb ) + validation(调整学习率、scheduler.step() 、emp val.run()得到results, maps相关信息、将测试结果results写入result.txt中、wandb_logger、Update best mAP 以加权mAP fitness为衡量标准、Save model)
# ============================================== 5、训练 ===============================================
# 设置/初始化一些训练要用的参数
# Model parameters
hyp['box'] *= 3. / nl # scale to layers
hyp['cls'] *= nc / 80. * 3. / nl # 分类损失系数
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) 用于loss计算
# 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names # 获取类别名
# Start training
t0 = time.time()
# 获取热身迭代的次数iterations # number of warmup iterations, max(3 epochs, 1k iterations)
nw = max(round(hyp['warmup_epochs'] * nb), 1000)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
# 初始化maps(每个类别的map)和results
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
# 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减
scheduler.last_epoch = start_epoch - 1 # do not move
# 设置amp混合精度训练 GradScaler + autocast
scaler = amp.GradScaler(enabled=cuda)
# 初始化损失函数
compute_loss = ComputeLoss(model) # init loss class
# 打印日志信息
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
f'Using {dataloader.num_workers} dataloader workers\n'
f'Logging results to {save_dir}\n'
f'Starting training for {epochs} epochs...')
# 开始训练
# start training -----------------------------------------------------------------------------------------------------
for epoch in range(start_epoch, epochs): # epoch
model.train()
# Update image weights (optional) 并不一定好 默认是False的
# 如果为True 进行图片采样策略(按数据集各类别权重采样)
if opt.image_weights:
# 根据前面初始化的图片采样权重model.class_weights(每个类别的权重 频率高的权重小)以及maps配合每张图片包含的类别数
# 通过rando.choices生成图片索引indices从而进行采用 (作者自己写的采样策略,效果不一定ok)
# Generate indices
if RANK in [-1, 0]:
# 从训练(gt)标签获得每个类的权重 标签频率高的类权重低
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
# 得到每一张图片对应的采样权重[128]
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)
# random.choices: 从range(dataset.n)序列中按照weights(参考每张图片采样权重)进行采样, 一次取一个数字 采样次数为k
# 最终得到所有图片的采样顺序(参考每张图片采样权重) list [128]
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Broadcast if DDP 采用广播采样策略
if RANK != -1:
indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
dist.broadcast(indices, 0)
if RANK != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
# 初始化训练时打印的平均损失信息
mloss = torch.zeros(4, device=device) # mean losses
if RANK != -1:
# DDP模式打乱数据,并且dpp.sampler的随机采样数据是基于epoch+seed作为随机种子,每次epoch不同,随机种子不同
dataloader.sampler.set_epoch(epoch)
# 进度条,方便展示信息
pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
if RANK in [-1, 0]:
# 创建进度条
pbar = tqdm(pbar, total=nb) # progress bar
# train
# 梯度清零
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch
# ni: 计算当前迭代次数 iteration
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
# 热身训练(前nw次迭代)热身训练迭代的次数iteration范围[1:nw] 选取较小的accumulate,学习率以及momentum,慢慢的训练
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
# bias的学习率从0.1下降到基准学习率lr*lf(epoch) 其他的参数学习率增加到lr*lf(epoch)
# lf为上面设置的余弦退火的衰减函数
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# Multi-scale 多尺度训练 从[imgsz*0.5, imgsz*1.5+gs]间随机选取一个尺寸(32的倍数)作为当前batch的尺寸送入模型开始训练
# imgsz: 默认训练尺寸 gs: 模型最大stride=32 [32 16 8]
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
# 下采样
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward 混合精度训练 开启autocast的上下文
with amp.autocast(enabled=cuda):
# pred: [8, 3, 68, 68, 25] [8, 3, 34, 34, 25] [8, 3, 17, 17, 25]
# [bs, anchor_num, grid_w, grid_h, xywh+c+20classes]
pred = model(imgs) # forward
# 计算损失,包括分类损失,置信度损失和框的回归损失
# loss为总损失值 loss_items为一个元组,包含分类损失、置信度损失、框的回归损失和总损失
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if RANK != -1:
# 采用DDP训练 平均不同gpu之间的梯度
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
# 如果采用collate_fn4取出mosaic4数据loss也要翻4倍
loss *= 4.
# Backward 反向传播 将梯度放大防止梯度的underflow(amp混合精度训练)
scaler.scale(loss).backward()
# Optimize
# 模型反向传播accumulate次(iterations)后再根据累计的梯度更新一次参数
if ni - last_opt_step >= accumulate:
# scaler.step()首先把梯度的值unscale回来
# 如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,
# 否则,忽略step调用,从而保证权重不更新(不被破坏)
scaler.step(optimizer) # optimizer.step 参数更新
# 准备着,看是否要增大scaler
scaler.update()
# 梯度清零
optimizer.zero_grad()
if ema:
# 当前epoch训练结束 更新ema
ema.update(model)
last_opt_step = ni
# 打印Print一些信息 包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等信息
if RANK in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s) # 进度条显示以上信息
# Plot 将前三次迭代的barch的标签框再图片中画出来并保存 train_batch0/1/2.jpg
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if loggers['tb'] and ni == 0: # TensorBoard
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
# wandb 显示信息
elif plots and ni == 10 and loggers['wandb']:
wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})
# end batch ------------------------------------------------------------------------------------------------
# Scheduler 一个epoch训练结束后都要调整学习率(学习率衰减)
# group中三个学习率(pg0、pg1、pg2)每个都要调整
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
scheduler.step()
# validation
# DDP process 0 or single-GPU
if RANK in [-1, 0]:
# mAP
# 将model中的属性赋值给ema
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
# 判断当前epoch是否是最后一轮
final_epoch = epoch + 1 == epochs
# notest: 是否只测试最后一轮 True: 只测试最后一轮 False: 每轮训练完都测试mAP
if not notest or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
# 测试使用的是ema(指数移动平均 对模型的参数做平均)的模型
# results: [1] Precision 所有类别的平均precision(最大f1时)
# [1] Recall 所有类别的平均recall
# [1] map@0.5 所有类别的平均mAP@0.5
# [1] map@0.5:0.95 所有类别的平均mAP@0.5:0.95
# [1] box_loss 验证集回归损失, obj_loss 验证集置信度损失, cls_loss 验证集分类损失
# maps: [80] 所有类别的mAP@0.5:0.95
results, maps, _ = val.run(data_dict, # 数据集配置文件地址 包含数据集的路径、类别个数、类名、下载地址等信息
batch_size=batch_size // WORLD_SIZE * 2, # bs
imgsz=imgsz_test, # test img size
model=ema.ema, # ema model
single_cls=single_cls, # 是否是单类数据集
dataloader=testloader, # test dataloader
save_dir=save_dir, # 保存地址 runs/train/expn
save_json=is_coco and final_epoch, # 是否按照coco的json格式保存预测框
verbose=nc < 50 and final_epoch, # 是否打印出每个类别的mAP
plots=plots and final_epoch, # 是否可视化
wandb_logger=wandb_logger, # 网页可视化 类似于tensorboard
compute_loss=compute_loss) # 损失函数(train)
# Write 将测试结果写入result.txt中
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
# wandb_logger 类似tensorboard的一种网页端显示训练信息的工具
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
if loggers['tb']:
loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard
if loggers['wandb']:
wandb_logger.log({tag: x}) # W&B
# Update best mAP 这里的best mAP其实是[P, R, mAP@.5, mAP@.5-.95]的一个加权值
# fi: [P, R, mAP@.5, mAP@.5-.95]的一个加权值 = 0.1*mAP@.5 + 0.9*mAP@.5-.95
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)
# Save model
# 保存带checkpoint的模型用于inference或resuming training
# 保存模型, 还保存了epoch, results, optimizer等信息
# optimizer将不会在最后一轮完成后保存
# model保存的是EMA的模型
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': deepcopy(de_parallel(model)).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if loggers['wandb']:
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
3.9、结尾
打印一些信息(日志: 打印训练时间、plots可视化训练结果results1.png、confusion_matrix.png 以及(‘F1’, ‘PR’, ‘P’, ‘R’)曲线变化 、日志信息) + coco评价(只在coco数据集才会运行) + 释放显存 return results
# 打印一些信息
if RANK in [-1, 0]:
# 日志: 打印训练时间
logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
# 可视化训练结果: results1.png confusion_matrix.png 以及('F1', 'PR', 'P', 'R')曲线变化 日志信息
if plots:
plot_results(save_dir=save_dir) # save as results1.png
plot_results_overlay() # save as results.png
if loggers['wandb']:
files = ['results1.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
# coco评价??? 只在coco数据集才会运行 一般用不到
if not evolve:
if is_coco: # COCO dataset
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
results, _, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False)
# Strip optimizers
# 模型训练完后, strip_optimizer函数将optimizer从ckpt中删除
# 并对模型进行model.half() 将Float32->Float16 这样可以减少模型大小, 提高inference速度
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
# Log the stripped model
if loggers['wandb']:
loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
wandb_logger.finish_run() # 关闭wandb_logger
# 释放显存
torch.cuda.empty_cache()
return results
4、run
该函数使支持指令能够执行脚本。
def run(**kwargs):
# 支持指令执行这个脚本 封装train接口
# Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
总结
总的来说,代码比较简单,就是抓数据+模型+学习率+优化器+训练这五个步骤。
Reference
Github:Laughing-q/yolov5_annotations
CSDN Liaojiajia-2020:YOLOv5代码详解(train.py部分)
– 2021.08.17
版权声明:本文为博主满船清梦压星河HK原创文章,版权归属原作者,如果侵权,请联系我们删除!
原文链接:https://blog.csdn.net/qq_38253797/article/details/119733964