对抗攻击
图片可以看成一个很长的向量,如果在图片的每个像素上都加上一个很小的pertubation(扰动、杂讯),再把它输入到神经网络,这个时候分类器可能就会误判。
没有被攻击的图片一般称为Benign Image,被攻击的图片称为Attacked Image。
通常攻击可以分为定向攻击和非定向攻击:
定向攻击(targeted attack):误分类成一个特定的类
非定向攻击(non-targeted attack):误分类成其他类(只要不是cat类)
该如何去攻击?
假设benign image是,输入到神经网络,输出 ,的真实值是
被攻击后输入是,输出;
想要攻击成功,就得让 和 相差较大
- L2-norm:
- L-infinity:
与神经网络不同更新参数不同的是,对抗攻击是更新输入,同样也用梯度下降的方法,如下图所示:
首先可以从开始,然后进行梯度下降,但是迭代过程中要注意限制,保证
(以L-infinity为例,限制就是需要在以为边长的正方形内)
可以看出,不同的攻击就是有不同的优化方法或者不同的限制。
几种著名的方法:
- FGSM
论文链接:Explaining And Harnessing Adversarial Examples
论文笔记链接:click here
主要思路就是只需要一次迭代就可以达到攻击,另外在对loss求导外面加了一个符号函数sign(大于0输出1,小于0输出-1),这样确保了扰动的限制
- I-FGSM
FGSM的升级版,即加入迭代版本,让攻击更准确
论文链接:Adversarial Examples In The Physical World
论文笔记链接:click here
白盒攻击&黑盒攻击
简单说就是白盒攻击知道模型的参数,黑盒攻击不知道模型的参数
黑盒攻击(black-box attack)
If you have the training data of the target network Train a proxy network yourself
Using the proxy network to generate attacked objects
黑盒攻击,不知道模型的参数,此时该怎么攻击?
如果知道目标网络的训练资料,可以训练一个替代模型,使用替代网络去产生被攻击的对象
那么黑盒攻击容易成功吗?
从论文(Delving into Transferable Adversarial Examples and Black-box Attacks)的实验来看,是容易成功的。
下图的表格,列代表被攻击的模型,行代表代理(proxy)模型。单元格(i,j)表示为模型 i(行)生成的对抗图像在模型 j(列)上评估的准确性。
对角线由于是同一模型,所以看成是白盒攻击。不同行不同列即为黑盒,例如由ResNet-152生成的对抗样本在ResNet-101上的准确率仅为13%。准确率越低,表示攻击越成功。具体可以看这篇 论文笔记
-
one-pixel attck
只需改变一个像素就可以达到攻击的目的
论文链接:One Pixel Attack for Fooling Deep Neural Networks
论文笔记链接:click here -
Universal Attack Perturbation(UAP)
一个通用(与图像无关)和非常小的扰动向量,就可以让攻击成功(以往是针对不同的图像需要设计不同perturbation产生对抗样本)
论文链接:Universal adversarial perturbations
论文笔记链接:click here -
BackDoor Attack(后门攻击)
攻击在训练阶段已经开始,对某张图片加了一些扰动,丢入神经网络进行训练
对抗攻击还被应用在语音,自然语言处理等
对抗防御
1.主动防御
对抗训练
2.被动防御
- 加一个filter(滤波器)
- 图像压缩(先压缩再解压避开攻击)
- Generator(按照对抗样本根据generator生成一张图片)
- Randomization(随机的防御)
参考链接:
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
文章出处登录后可见!