使用Pytorch实现强化学习——DQN算法

目录


一、强化学习的主要构成

        强化学习主要由两部分组成:智能体(agent)和环境(env)。在强化学习过程中,智能体与环境一直在交互。智能体在环境里面获取某个状态s_{t}后,它会利用该状态输出一个动作(action)a_{t}。然后这个动作会在环境之中被执行,环境会根据智能体采取的动作,输出下一个状态s_{t+1}以及当前这个动作带来的奖励r_{t}。智能体的目的就是尽可能多地从环境中获取奖励

二、基于python的强化学习框架

        基于python的强化学习框架有很多种,具体可以见这个博主的博客:(7条消息) 【强化学习/gym】(二)一些强化学习的框架或代码_o0o_-_的博客-CSDN博客_可解释性的强化学习框架代码        本次我使用到的框架是pytorch,因为DQN算法的实现包含了部分的神经网络,这部分对我来说使用pytorch会更顺手,所以就选择了这个。

三、gym

       gym 定义了一套接口,用于描述强化学习中的环境这一概念,同时在其官方库中,包含了一些已实现的环境。

四、DQN算法

        传统的强化学习算法使用的是Q表格存储状态价值函数或者动作价值函数,但是实际应用时,问题在的环境可能有很多种状态,甚至数不清,所以这种情况下使用离散的Q表格存储价值函数会非常不合理,所以DQN(Deep Q-learning)算法,使用神经网络拟合动作价值函数Q(s, a)

        通常DQN算法只能处理动作离散,状态连续的情况,使用神经网络拟合出动作价值函数Q(s, a), 然后针对动作价值函数,选择出当状态state固定的Q值最大的动作a。

DQN算法有两个特点:

1.经验回放

        每一次的样本都放到样本池中,所以可以多次反复的使用一个样本,重复利用。训练时一次随机抽取多个数据样本来进行训练。

2.目标网络

        DQN算法的更新目标时让Q(s, a)逼近r + gamma max_{a^{'}}Q(s^{'}, a^{'}), 但是如果两个Q使用一个网络计算,那么Q的目标值也在不断改变, 容易造成神经网络训练的不稳定。DQN使用目标网络,训练时目标值Q使用目标网络来计算,目标网络的参数定时和训练网络的参数同步。

五、使用pytorch实现DQN算法

import time
import random
import torch
from torch import nn
from torch import optim
import gym
import numpy as np
import matplotlib.pyplot as plt
from collections import deque, namedtuple       # 队列类型
from tqdm import tqdm                           # 绘制进度条用

device = torch. Device("cuda" if torch.cuda.is_available() else "cpu")
Transition = namedtuple('Transition', ('state', 'action', 'reward', 'next_state', 'done'))

1.replay memory

class ReplayMemory(object):

    def __init__(self, memory_size):
        self.memory = deque([], maxlen=memory_size)

    def sample(self, batch_size):
        batch_data = random.sample(self.memory, batch_size)
        state, action, reward, next_state, done = zip(*batch_data)
        return state, action, reward, next_state, done

    def push(self, *args):
        # *args: 把传进来的所有参数都打包起来生成元组形式
        # self.push(1, 2, 3, 4, 5)
        # args = (1, 2, 3, 4, 5)
        self.memory.append(Transition(*args))

    def __len__(self):
        return len(self.memory)

2.神经网络部分

class Qnet(nn.Module):

    def __init__(self, n_observations, n_actions):
        super(Qnet, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(n_observations, 128),
            nn.ReLU(),
            nn.Linear(128, n_actions)
        )

    def forward(self, state):
        return self.model(state)

3.Agent

class Agent(object):

    def __init__(self, observation_dim, action_dim, gamma, lr, epsilon, target_update):
        self.action_dim = action_dim
        self.q_net = Qnet(observation_dim, action_dim).to(device)
        self.target_q_net = Qnet(observation_dim, action_dim).to(device)
        self.gamma = gamma
        self.lr = lr
        self.epsilon = epsilon
        self.target_update = target_update
        self.count = 0

        self.optimizer = optim.Adam(params=self.q_net.parameters(), lr=lr)
        self.loss = nn.MSELoss()
       

    def take_action(self, state):
        if np.random.uniform(0, 1) < 1 - self.epsilon:
            state = torch.tensor(state, dtype=torch.float).to(device)
            action = torch.argmax(self.q_net(state)).item()
        else:
            action = np.random.choice(self.action_dim)
        return action

    def update(self, transition_dict):

        states = transition_dict.state
        actions = np.expand_dims(transition_dict.action, axis=-1) # 扩充维度
        rewards = np.expand_dims(transition_dict.reward, axis=-1) # 扩充维度
        next_states = transition_dict.next_state
        dones = np.expand_dims(transition_dict.done, axis=-1) # 扩充维度

        states = torch.tensor(states, dtype=torch.float).to(device)
        actions = torch.tensor(actions, dtype=torch.int64).to(device)
        rewards = torch.tensor(rewards, dtype=torch.float).to(device)
        next_states = torch.tensor(next_states, dtype=torch.float).to(device)
        dones = torch.tensor(dones, dtype=torch.float).to(device)

        # update q_values
        # gather(1, acitons)意思是dim=1按行号索引, index=actions
        # actions=[[1, 2], [0, 1]] 意思是索引出[[第一行第2个元素, 第1行第3个元素],[第2行第1个元素, 第2行第2个元素]]
        # 相反,如果是这样
        # gather(0, acitons)意思是dim=0按列号索引, index=actions
        # actions=[[1, 2], [0, 1]] 意思是索引出[[第一列第2个元素, 第2列第3个元素],[第1列第1个元素, 第2列第2个元素]]
        # states.shape(64, 4) actions.shape(64, 1), 每一行是一个样本,所以这里用dim=1很合适
        predict_q_values = self.q_net(states).gather(1, actions)
        with torch.no_grad():
            # max(1) 即 max(dim=1)在行向找最大值,这样的话shape(64, ), 所以再加一个view(-1, 1)扩增至(64, 1)
            max_next_q_values = self.target_q_net(next_states).max(1)[0].view(-1, 1)
            q_targets = rewards + self.gamma * max_next_q_values * (1 - dones)
        l = self.loss(predict_q_values, q_targets)

        self.optimizer.zero_grad()
        l.backward()
        self.optimizer.step()

        if self.count % self.target_update == 0:
            # copy model parameters
            self.target_q_net.load_state_dict(self.q_net.state_dict())

        self.count += 1

4.模型训练函数

def run_episode(env, agent, repalymemory, batch_size):
    state = env.reset()
    reward_total = 0
    while True:
        action = agent.take_action(state)
        next_state, reward, done, _ = env.step(action)
        # print(reward)
        repalymemory.push(state, action, reward, next_state, done)
        reward_total += reward
        if len(repalymemory) > batch_size:
            state_batch, action_batch, reward_batch, next_state_batch, done_batch = repalymemory.sample(batch_size)
            T_data = Transition(state_batch, action_batch, reward_batch, next_state_batch, done_batch)
            # print(T_data)
            agent.update(T_data)
        state = next_state
        if done:
            break
    return reward_total


def episode_evaluate(env, agent, render):
    reward_list = []
    for i in range(5):
        state = env.reset()
        reward_episode = 0
        while True:
            action = agent.take_action(state)
            next_state, reward, done, _ = env.step(action)
            reward_episode += reward
            state = next_state
            if done:
                break
            if render:
                env.render()
        reward_list.append(reward_episode)
    return np.mean(reward_list).item()

def test(env, agent, delay_time):  
    state = env.reset()
    reward_episode = 0
    while True:
        action = agent.take_action(state)
        next_state, reward, done, _ = env.step(action)
        reward_episode += reward
        state = next_state
        if done:
            break
        env.render()
        time. Sleep(delay_time)

5.训练模型

模型训练使用到的环境时gym提供的CartPole游戏(具体可以看这里:Cart Pole – Gym Documentation (gymlibrary.dev)),这个环境比较经典,小车运行结束的要求有三个:

(1)杆子的角度超过pm 12

(2)小车位置大于 ±2.4(小车中心到达显示屏边缘)

(3)小车移动步数超过200(v1是500)

小车每走一步奖励就会+1,所以在v0版本环境中,小车一次episode的最大奖励为200

if __name__ == "__main__":

    # print("prepare for RL")
    env = gym.make("CartPole-v0")
    env_name = "CartPole-v0"
    observation_n, action_n = env.observation_space.shape[0], env.action_space.n
    # print(observation_n, action_n)
    agent = Agent(observation_n, action_n, gamma=0.98, lr=2e-3, epsilon=0.01, target_update=10)

    replaymemory = ReplayMemory(memory_size=10000)
    batch_size = 64

    num_episodes = 200
    reward_list = []
    # print("start to train model")
    # 显示10个进度条 
    for i in range(10):
        with tqdm(total=int(num_episodes/10), desc="Iteration %d" % i) as pbar:
            for episode in range(int(num_episodes / 10)):

                reward_episode = run_episode(env, agent, replaymemory, batch_size)
                reward_list.append(reward_episode)

                if (episode+1) % 10 == 0:

                    test_reward = episode_evaluate(env, agent, False)
                    # print("Episode %d, total reward: %.3f" % (episode, test_reward))
                    pbar.set_postfix({
                        'episode': '%d' % (num_episodes / 10 * i + episode + 1),
                        'return' : '%.3f' % (test_reward)
                    })
                pbar.update(1) # 更新进度条

    test(env, agent, 0.5)     # 最后用动画观看一下效果
    episodes_list = list(range(len(reward_list)))
    plt.plot(episodes_list, reward_list)
    plt.xlabel('Episodes')
    plt.ylabel('Returns')
    plt.title('Double DQN on {}'.format(env_name))
    plt.show()

训练结果如图所示:

参考资料:

蘑菇书EasyRL (datawhalechina.github.io)

DQN 算法 (boyuai.com)

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年4月26日
下一篇 2023年4月26日

相关推荐