R实战 | 限制性立方样条(RCS)

94020e66ba9d7921de59220b315d4594.jpeg

RCS

在科学研究中,我们经常构建回归模型来分析自变量因变量之间的关系。大多数的回归模型有一个重要的假设就是自变量和因变量呈线性关联。当自变量和因变量之间为非线性关系时,可以将连续型变量转化为分类变量,但是分类变量的类别数目以及节点位置的选择一般会带有主观性并且分类变量会损失部分信息;也可以直接拟合自变量和因变量之间的非线性关系,但是直接构建多项式回归可能存在过度拟合、共线性等问题。因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。

样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在数据范围内的多个位置,多项式的类型以及节点的数量和位置决定了样条曲线的类型。立方则指的是 函数为3次多项式。限制是在回归样条的基础上附加要求:样条函数在自变量数据范围两端的两个区间 [X1,X2)(Xn-1,Xn] 内是线性函数。

6f42ddb6935eacec94ca0677e2567596.png
RCS曲线

RCS节点的数量比位置更重要。由于节点个数的选择和自由度有关, 所以当样本量比较大的时候可以取较多的节点。但是节点越多, 自由度越大, 模型越复杂, 越难解在「«Regression Modeling Strategies»」这本书中,Harrell 建议节点数为4时,模型的拟合效果较好,即同时可以兼顾曲线的平滑程度以及避免过拟合造成的精确度降低。当样本量较大时,5个节点是更好的选择。小样本(n<30)可以选择3个节点。当节点的个数为2时,得到的拟合曲线就是一条直线。大多数研究者推荐的节点为3-5个。eafde0a591adb9ff213514bfc9a76dec.png

Table of Contents

一个例子

Lee DH, Keum N, Hu FB, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ. 2018;362:k2575. Published 2018 Jul 3. doi:10.1136/bmj.k2575

ba579d6b40ac19e47daa5521186f55c9.png
Association of predicted body composition and  body mass index (BMI)* with all cause mortality in men
c5b1f2d5a3bb715d5acc635d72849d14.png

如图,为了探究预测的FM、LBM和BMI与男性全因死亡率的关系,作者分别对这三个因素做了RCS分析。

RCS实战

#加载所需要的包
library(ggplot2)
#install.packages('rms')
library(rms)   
# 导入示例数据
data <- read.csv('test.csv')
head(data)
> head(data)
       age    sex      time death
1 60.57519   Male  3.094579     1
2 42.11447   Male  1.574237     0
3 54.86611   Male  3.239313     0
4 55.82207   Male 12.495977     0
5 52.48256 Female  3.252534     0
6 46.12436   Male  2.836695     0
# 对数据进行打包,整理
dd <- datadist(data) #为后续程序设定数据环境
options(datadist='dd') #为后续程序设定数据环境
# 拟合模型
fit<- cph(Surv(time,death) ~ rcs(age,4) + sex,data=data)  # 节点数设为4
# 非线性检验
# P<0.05为存在非线性关系
anova(fit)
> anova(fit)
                Wald Statistics          Response: Surv(time, death) 

 Factor     Chi-Square d.f. P     
 age        57.75      3    <.0001
  Nonlinear  8.17      2    0.0168
 sex        18.75      1    <.0001
 TOTAL      75.63      4    <.0001
# 查看HR预测表
# 看一下预测的HR所对因的age
HR<-Predict(fit, age,fun=exp,ref.zero = TRUE)
head(HR)
> head(HR)
       age  sex      yhat     lower    upper
1 19.71985 Male 0.7087866 0.2403429 2.090257
2 20.00869 Male 0.7052492 0.2429359 2.047356
3 20.29754 Male 0.7017294 0.2455536 2.005363
4 20.58638 Male 0.6982271 0.2481960 1.964258
5 20.87523 Male 0.6947423 0.2508632 1.924024
6 21.16408 Male 0.6912750 0.2535552 1.884643

Response variable (y):  

Adjust to: sex=Male  

Limits are 0.95 confidence limits
# 绘图
ggplot()+
  geom_line(data=HR, aes(age,yhat),
            linetype="solid",size=1,alpha = 0.7,colour="#0070b9")+
  geom_ribbon(data=HR, 
              aes(age,ymin = lower, ymax = upper),
              alpha = 0.1,fill="#0070b9")+
  theme_classic()+
  geom_hline(yintercept=1, linetype=2,size=1)+
  geom_vline(xintercept=48.89330,size=1,color = '#d40e8c')+ #查表HR=1对应的age
  labs(title = "Stroke Risk", x="Age", y="HR (95%CI)")
572cac5279fb6726e28e53f430d94e92.png

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
扎眼的阳光的头像扎眼的阳光普通用户
上一篇 2023年2月23日 下午2:33
下一篇 2023年2月23日 下午2:34

相关推荐

此站出售,如需请站内私信或者邮箱!