【目标检测】YOLOV8实战入门(五)模型预测

predict模式用于在新图像或视频上使用经过训练的YOLOv8模型进行预测,在此模式下,模型从checkpoint 文件加载,用户可以提供图像或视频来执行推理。模型预测输入图像或视频中对象的类别和位置。

from ultralytics import YOLO
from PIL import Image
import cv2

model = YOLO("model.pt")
# 接受所有格式-image/dir/Path/URL/video/PIL/ndarray。0用于网络摄像头
results = model.predict(source="0")
results = model.predict(source="folder", show=True) # 展示预测结果

# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True)  # 保存绘制的图像

# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True)  # 将预测保存为标签

# from list of PIL/ndarray
results = model.predict(source=[im1, im2])

YOLOv8预测模式可以为各种任务生成预测,在使用流模式时返回结果对象列表或结果对象的内存高效生成器。通过在预测器的调用方法中传递stream=True来启用流模式。stream=True的流媒体模式应用于长视频或大型预测源,否则结果将在内存中累积并最终导致内存不足错误。

inputs = [img, img]  # list of numpy arrays
results = model(inputs, stream=True)  # generator of Results objects

for result in results:
    boxes = result.boxes  # Boxes object for bbox outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    probs = result.probs  # Class probabilities for classification outputs

相关参数如下

KeyValueDescription
source'ultralytics/assets'source directory for images or videos
conf0.25object confidence threshold for detection
iou0.7intersection over union (IoU) threshold for NMS
halfFalseuse half precision (FP16)
deviceNonedevice to run on, i.e. cuda device=0/1/2/3 or device=cpu
showFalseshow results if possible
saveFalsesave images with results
save_txtFalsesave results as .txt file
save_confFalsesave results with confidence scores
save_cropFalsesave cropped images with results
hide_labelsFalsehide labels
hide_confFalsehide confidence scores
max_det300maximum number of detections per image
vid_strideFalsevideo frame-rate stride
line_thickness3bounding box thickness (pixels)
visualizeFalsevisualize model features
augmentFalseapply image augmentation to prediction sources
agnostic_nmsFalseclass-agnostic NMS
retina_masksFalseuse high-resolution segmentation masks
classesNonefilter results by class, i.e. class=0, or class=[0,2,3]
boxesTrueShow boxes in segmentation predictions

YOLOv8可以接受各种输入源,如下表所示。这包括图像、URL、PIL图像、OpenCV、numpy数组、torch张量、CSV文件、视频、目录、全局、YouTube视频和流。该表指示每个源是否可以在流模式下使用stream=True✅以及每个源的示例参数。

sourcemodel(arg)typenotes
image'im.jpg'str, Path
URL'https://ultralytics.com/images/bus.jpg'str
screenshot'screen'str
PILImage.open('im.jpg')PIL.ImageHWC, RGB
OpenCVcv2.imread('im.jpg')[:,:,::-1]np.ndarrayHWC, BGR to RGB
numpynp.zeros((640,1280,3))np.ndarrayHWC
torchtorch.zeros(16,3,320,640)torch.TensorBCHW, RGB
CSV'sources.csv'str, PathRTSP, RTMP, HTTP
video ✅'vid.mp4'str, Path
directory ✅'path/'str, Path
glob ✅'path/*.jpg'strUse * operator
YouTube ✅'https://youtu.be/Zgi9g1ksQHc'str
stream ✅'rtsp://example.com/media.mp4'strRTSP, RTMP, HTTP

图像类型

Image SuffixesExample Predict CommandReference
.bmpyolo predict source=image.bmpMicrosoft BMP File Format
.dngyolo predict source=image.dngAdobe DNG
.jpegyolo predict source=image.jpegJPEG
.jpgyolo predict source=image.jpgJPEG
.mpoyolo predict source=image.mpoMulti Picture Object
.pngyolo predict source=image.pngPortable Network Graphics
.tifyolo predict source=image.tifTag Image File Format
.tiffyolo predict source=image.tiffTag Image File Format
.webpyolo predict source=image.webpWebP
.pfmyolo predict source=image.pfmPortable FloatMap

视频类型

Video SuffixesExample Predict CommandReference
.asfyolo predict source=video.asfAdvanced Systems Format
.aviyolo predict source=video.aviAudio Video Interleave
.gifyolo predict source=video.gifGraphics Interchange Format
.m4vyolo predict source=video.m4vMPEG-4 Part 14
.mkvyolo predict source=video.mkvMatroska
.movyolo predict source=video.movQuickTime File Format
.mp4yolo predict source=video.mp4MPEG-4 Part 14 – Wikipedia
.mpegyolo predict source=video.mpegMPEG-1 Part 2
.mpgyolo predict source=video.mpgMPEG-1 Part 2
.tsyolo predict source=video.tsMPEG Transport Stream
.wmvyolo predict source=video.wmvWindows Media Video
.webmyolo predict source=video.webmWebM Project

预测结果对象包含以下组件:

Results.boxes: — 具有用于操作边界框的属性和方法的boxes

Results.masks: — 用于索引掩码或获取段坐标的掩码对象

Results.probs: — 包含类概率或logits

Results.orig_img: — 载入内存的原始图像

Results.path: — 包含输入图像路径的路径

默认情况下,每个结果都由一个torch. Tensor组成,它允许轻松操作:

results = results.cuda()
results = results.cpu()
results = results.to('cpu')
results = results.numpy()
from ultralytics import YOLO
import cv2
from ultralytics.yolo.utils.benchmarks import benchmark

model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')
results = model.predict(r'E:\CS\DL\yolo\yolov8study\bus.jpg')
boxes = results[0].boxes
masks = results[0].masks
probs = results[0].probs 
print(f"boxes:{boxes[0]}")
print(f"masks:{masks.xy }")
print(f"probs:{probs}")

output:

image 1/1 E:\CS\DL\yolo\yolov8study\bus.jpg: 640x480 4 0s, 1 5, 1 36, 25.9ms
Speed: 4.0ms preprocess, 25.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 640)
WARNING  'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.
boxes:ultralytics.yolo.engine.results.Boxes object with attributes:

boxes: tensor([[670.1221, 389.6674, 809.4929, 876.5032,   0.8875,   0.0000]], device='cuda:0')   
cls: tensor([0.], device='cuda:0')
conf: tensor([0.8875], device='cuda:0')
data: tensor([[670.1221, 389.6674, 809.4929, 876.5032,   0.8875,   0.0000]], device='cuda:0')    
id: None
is_track: False
orig_shape: tensor([1080,  810], device='cuda:0')
shape: torch.Size([1, 6])
xywh: tensor([[739.8075, 633.0853, 139.3708, 486.8358]], device='cuda:0')
xywhn: tensor([[0.9133, 0.5862, 0.1721, 0.4508]], device='cuda:0')
xyxy: tensor([[670.1221, 389.6674, 809.4929, 876.5032]], device='cuda:0')
xyxyn: tensor([[0.8273, 0.3608, 0.9994, 0.8116]], device='cuda:0')
masks:[array([[     804.94,       391.5],
       [     794.81,      401.62],
       [     794.81,      403.31],
       [     791.44,      406.69],
       ......
probs:None

我们可以使用Result对象的plot()函数在图像对象中绘制结果。它绘制在结果对象中找到的所有组件(框、掩码、分类日志等)

annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
cv2.waitKey()
cv2.destroyAllWindows()

使用OpenCV(cv2)和YOLOv8对视频帧运行推理的Python脚本。

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt')

# Open the video file
video_path = "sample.mp4"
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)

        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年5月31日
下一篇 2023年5月31日

相关推荐

此站出售,如需请站内私信或者邮箱!