深度学习AI识别人脸年龄

以下链接来自 @落痕的寒假

GitHub – luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise

https://download.csdn.net/download/luohenyj/10993309

import cv2 as cv
import time
import argparse
 
def getFaceBox(net, frame, conf_threshold=0.7):
    frameOpencvDnn = frame.copy()
    frameHeight = frameOpencvDnn.shape[0]
    frameWidth = frameOpencvDnn.shape[1]
    blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
 
    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[0, 0, i, 3] * frameWidth)
            y1 = int(detections[0, 0, i, 4] * frameHeight)
            x2 = int(detections[0, 0, i, 5] * frameWidth)
            y2 = int(detections[0, 0, i, 6] * frameHeight)
            bboxes.append([x1, y1, x2, y2])
            cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
    return frameOpencvDnn, bboxes
 
 
parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
 
args = parser.parse_args()
 
faceProto = "age_gender/model/opencv_face_detector.pbtxt"
faceModel = "age_gender/model/opencv_face_detector_uint8.pb"
 
ageProto = "age_gender/model/age_deploy.prototxt"
ageModel = "age_gender/model/age_net.caffemodel"
 
genderProto = "age_gender/model/gender_deploy.prototxt"
genderModel = "age_gender/model/gender_net.caffemodel"
 
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
 
# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
 
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:
    # Read frame
    t = time.time()
    hasFrame, frame = cap.read()
    if not hasFrame:
        cv.waitKey()
        break
 
    frameFace, bboxes = getFaceBox(faceNet, frame)
    if not bboxes:
        print("No face Detected, Checking next frame")
        continue
 
    for bbox in bboxes:
        # print(bbox)
        face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
 
        blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
        genderNet.setInput(blob)
        genderPreds = genderNet.forward()
        gender = genderList[genderPreds[0].argmax()]
        # print("Gender Output : {}".format(genderPreds))
        print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
 
        ageNet.setInput(blob)
        agePreds = ageNet.forward()
        age = ageList[agePreds[0].argmax()]
        print("Age Output : {}".format(agePreds))
        print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
 
        label = "{},{}".format(gender, age)
        cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
        cv.imshow("Age Gender Demo", frameFace)
        # cv.imwrite("age-gender-out-{}".format(args.input),frameFace)
    print("time : {:.3f}".format(time.time() - t))
  1. 导入必要的模块:

    • cv2:用于图像处理和显示
    • time:用于计时
    • argparse:用于解析命令行参数
  2. 定义函数 getFaceBox 用于检测人脸框:

    • 通过 DNN 模型进行人脸检测,筛选出置信度高于阈值的人脸框,并在原图上绘制矩形框。
  3. 使用 argparse 解析命令行参数:

    • 支持从图像或视频文件中读取,如果没有指定输入则使用摄像头捕获。
  4. 定义人脸检测和年龄、性别识别模型的路径:

    • faceProto 和 faceModel 是人脸检测模型的配置文件和权重文件的路径。
    • ageProto 和 ageModel 是年龄识别模型的配置文件和权重文件的路径。
    • genderProto 和 genderModel 是性别识别模型的配置文件和权重文件的路径。
  5. 加载模型:

    • 使用 cv.dnn.readNet 加载人脸检测、年龄识别和性别识别模型。
  6. 打开视频文件或图像文件或者摄像头流,并设置填充值:

    • 使用 cv.VideoCapture 打开视频文件或图像文件或者摄像头流,并设置填充值为 20。
  7. 在循环中处理每帧图像:

    • 读取一帧图像,然后调用 getFaceBox 函数检测人脸框。
    • 对检测到的人脸框进行处理,提取人脸区域,并使用年龄和性别模型进行识别。
    • 将识别结果标记在图像上并显示。

优化:

  1. 并行处理:如果一帧中有多个面孔,您可以并行处理它们以加快年龄和性别预测。这需要使用线程或多处理。

  2. 跳帧:对于视频输入,您不需要处理每一帧,特别是在视频流畅且面部变化不快的情况下。您可以处理每第 n 帧以减少计算量。

  3. 调整帧大小:在人脸检测之前缩小帧的尺寸可以提高速度,因为它减少了要处理的数据量。

  4. 优化 Blob 创建:您可以对性别和年龄检测模型重复使用 Blob 创建步骤,以避免重复计算。

  5. 使用更快的模型:如果您的应用程序允许,您可以切换到更快(尽管可能不太准确)的人脸检测模型。

  6. 资源管理:合理释放视频采集、窗口等资源,避免不必要的资源消耗。

import cv2 as cv
import time
import argparse
from threading import Thread
from queue import Queue

def processFace(faceNet, genderNet, ageNet, frame, bbox, resultsQueue, padding=20):
    face = frame[max(0, bbox[1] - padding):min(bbox[3] + padding, frame.shape[0] - 1),
                 max(0, bbox[0] - padding):min(bbox[2] + padding, frame.shape[1] - 1)]

    blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
    genderNet.setInput(blob)
    genderPreds = genderNet.forward()
    gender = genderList[genderPreds[0].argmax()]

    ageNet.setInput(blob)
    agePreds = ageNet.forward()
    age = ageList[agePreds[0].argmax()]

    label = "{},{}".format(gender, age)
    resultsQueue.put((bbox, label))

def main():
    parser = argparse.ArgumentParser(description='Age and gender recognition with OpenCV.')
    parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
    args = parser.parse_args()

    # [Load models...]

    cap = cv.VideoCapture(args.input if args.input else 0)
    frameSkip = 5  # Process every 5th frame
    frameCount = 0
    resultsQueue = Queue()

    while cv.waitKey(1) < 0:
        hasFrame, frame = cap.read()
        if not hasFrame:
            cv.waitKey()
            break

        frameCount += 1
        if frameCount % frameSkip != 0:
            continue

        frameFace, bboxes = getFaceBox(faceNet, frame)
        if not bboxes:
            print("No face Detected, Checking next frame")
            continue

        for bbox in bboxes:
            # Start a new thread for processing each face
            Thread(target=processFace, args=(faceNet, genderNet, ageNet, frame, bbox, resultsQueue)).start()

        # Draw results from the queue
        while not resultsQueue.empty():
            bbox, label = resultsQueue.get()
            cv.putText(frameFace, label, (bbox[0], bbox[1] - 10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)

        cv.imshow("Age Gender Demo", frameFace)

    cap.release()
    cv.destroyAllWindows()

if __name__ == "__main__":
    main()

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2023年11月28日
下一篇 2023年11月28日

相关推荐

此站出售,如需请站内私信或者邮箱!