超参数调试、Batch正则化和编程框架
参考链接:链接:https://blog.csdn.net/red_stone1/article/details/78403416
1. Tuning Process
深度神经网络需要调试的超参数(Hyperparameters)较多,包括:
α:学习率
β:动量梯度下降因子
β1,β2,ε:Adam算法参数
#layers:神经网络层数
#hidden units:各隐藏层神经元个数
learning rate decay:学习因子下降参数
mini-batch size:批量训练样本包含的样本个数
超参数之间也有重要性差异。通常来说,学习因子α是最重要的超参数,也是需要重点调试的超参数。动量梯度下降因子β、各隐藏层神经元个数#hidden units和mini-batch size的重要性仅次于αα。然后就是神经网络层数#layers和学习因子下降参数learning rate decay。最后,Adam算法的三个参数β1,β2,εβ1,β2,ε一般常设置为0.9,0.999和10−8,不需要反复调试。当然,这里超参数重要性的排名并不是绝对的,具体情况,具体分析。
模型调参注意细节
神经网络的调参效果不理想时->(解决思路) – 账号 – 博客园
非过拟合情况
- 是否找到合适的损失函数?(不同问题适合不同的损失函数)(理解不同损失函数的适用场景)
(解决思路)选择合适的损失函数(choosing proper loss )
神经网络的损失函数是非凸的,有多个局部最低点,目标是找到一个可用的最低点。非凸函数是凹凸不平的,但是不同的损失函数凹凸起伏的程度不同,例如下述的平方损失和交叉熵损失,后者起伏更大,且后者更容易找到一个可用的最低点,从而达到优化的目的。
-. Square Error(平方损失)
-. Cross Entropy(交叉熵损失) - batch size是否合适?batch size太大 -> loss很快平稳,batch size太小 -> loss会震荡(理解mini-batch)
(解决思路)采用合适的Mini-batch进行学习,使用Mini-batch的方法进行学习,一方面可以减少计算量,一方面有助于跳出局部最优点。因此要使用Mini-batch。更进一步,batch的选择非常重要,batch取太大会陷入局部最小值,batch取太小会抖动厉害 - 是否选择了合适的激活函数?(各个激活函数的来源和差异)
(解决思路)使用激活函数把卷积层输出结果做非线性映射,但是要选择合适的激活函数。
-. Sigmoid函数是一个平滑函数,且具有连续性和可微性,它的最大优点就是非线性。但该函数的两端很缓,会带来猪队友的问题,易发生学不动的情况,产生梯度弥散。
-. ReLU函数是如今设计神经网络时使用最广泛的激活函数,该函数为非线性映射,且简单,可缓解梯度弥散。 - 学习率,学习率小收敛慢,学习率大loss震荡(怎么选取合适的学习率)
(解决思路)学习率过大,会抖动厉害,导致没有优化提 , 学习率太小,下降太慢,训练会很慢 - 是否选择了合适的优化算法?(比如Adam)(理解不同优化算法的适用场景)
(解决思路)在梯度的基础上使用动量,有助于冲出局部最低点。
过拟合情况
- Early Stopping(早停法)
(详细解释)早停法将数据分成训练集和验证集,训练集用来计算梯度、更新权重和阈值,验证集用来估计误差,若训练集误差降低但验证集误差升高,则停止训练,同时返回具有最小验证集误差的连接权和阈值。 - Regularization(正则化)
(详细解释) 权重衰减(Weight Decay)。到训练的后期,通过衰减因子使权重的梯度下降地越来越缓。
*. Batch Normalization
*. Dropout
*. L1 , L2 - 调整网络结构
- 增大训练数据量
*. 获取更多的数据
*. 数据扩充(图片: 镜像 , 翻转 , 随机裁剪等.)
优化器参数
torch.optim.Adam(model.parameters(), lr=lr ,eps=args.epsilon)
-
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
-
lr (float, optional) – learning rate (default: 1e-3)
-
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
-
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
-
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
-
amsgrad (boolean, optional) – whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False)
epsilon从0.1到1e-06,测试auc从0.6到0.9太可怕了,
torch.optim.Adam(model.parameters(), lr=lr,weight_decay=0.0005)
加入weight_decay又到0.68附近
去掉weight_decay到测试的到0.88,训练集还在升高还往上升肯定有问题
自适应优化器Adam还需加learning-rate decay
自适应优化器Adam还需加learning-rate decay吗? – 知乎
作者说加了lr decay的Adam还是有效提升了模型的表现。
但这只是在它的实验里进行了说明,并没有从理论上进行证明。因此不能说有定论,但是若你的模型结果极不稳定的问题,loss会抖动特别厉害,不妨尝试一下加个lr decay试一试。
如何加
torch中有很多进行lr decay的方式,这里给一个ExponentialLR API 的demo代码,就是这样就好了。
ExponentialLR原理: decayed_lr = lr * decay_rate ^ (global_step / decay_steps)
my_optim = Adam(model.parameters, lr)
decayRate = 0.96
my_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=my_optim, gamma=decayRate)
#my_lr_scheduler = optim.lr_scheduler.StepLR(my_optim, step_size=lr_decay, gamma=decayRate)
for e in epochs:
train_epoch()
my_optim.step()
valid_epoch()
my_lr_scheduler.step()
学习率衰减策略
优化器NoamOpt
我们选择Adam[1]作为优化器,其参数为
和 . 根据以下公式,我们在训练过程中改变了学习率:
在预热中随步数线性地增加学习速率,并且此后与步数的反平方根成比例地减小它。我们设置预热步数为4000。
注意:这部分非常重要,需要这种设置训练模型。
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def get_std_opt(model):
return NoamOpt(model.src_embed[0].d_model, 2, 4000,
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
当前模型在不同模型大小和超参数的情况下的曲线示例。
# Three settings of the lrate hyperparameters.
opts = [NoamOpt(512, 1, 4000, None),
NoamOpt(512, 1, 8000, None),
NoamOpt(256, 1, 4000, None)]
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
plt.legend(["512:4000", "512:8000", "256:4000"])
None
步数为4000是指,我使用时候设置为多大合适呢
loss为负
可能的原因:数据为归一化
网络中的:
self.softmax = nn.Softmax(dim=1)
改为:
self.softmax = nn.LogSoftmax(dim=1)
测试集AUC高于训练集AUC
感觉这个回答似乎有些道理,我的数据集划分的时候可能没有随机打乱
文章出处登录后可见!