本篇文章的代码块的实现主要是为了能够快速的通过python第三方非标准库对比出两张人脸是否一样。
实现过程比较简单,但是第三方python依赖的安装过程较为曲折,下面是通过实践对比总结出来的能够支持的几个版本,避免大家踩坑。
python版本:3.6.8
dlib版本:19.7.0
face-recognition版本:0.1.10
开始之前,我们选择使用pip的方式对第三方的非标准库进行安装。
pip install cmake
pip install dlib==19.7.0
pip install face-recognition==0.1.10
pip install opencv-python
然后,将使用到的模块cv2/face-recognition两个模块导入到代码块中即可。
# OpenCV is a library of programming functions mainly aimed at real-time computer vision.
import cv2
# It's loading a pre-trained model that can detect faces in images.
import face_recognition
新建一个python函数get_face_encodings,用来获取人脸部分的编码,后面可以根据这个编码来进行人脸比对。
def get_face_encodings(image_path):
"""
It takes an image path, loads the image, finds the faces in the image, and returns the 128-d face encodings for each
face
:param image_path: The path to the image to be processed
"""
# It's loading a pre-trained model that can detect faces in images.
image = cv2.imread(image_path)
# It's converting the image from BGR to RGB.
image_RGB = image[:, :, ::-1]
image_face = face_recognition.face_locations(image_RGB)
# It's taking the image and the face locations and returning the face encodings.
face_env = face_recognition.face_encodings(image_RGB, image_face)
# It's returning the first face encoding in the list.
return face_env[0]
上述函数中注释都是通过Pycharm插件自动生成的,接下来我们直接调用get_face_encodings函数分别获取两个人脸的编码。
# It's taking the image and the face locations and returning the face encodings.
ima1 = get_face_encodings('03.jpg')
# It's taking the image and the face locations and returning the face encodings.
ima2 = get_face_encodings('05.jpg')
# It's taking the image and the face locations and returning the face encodings.
ima1 = get_face_encodings('03.jpg')
# It's taking the image and the face locations and returning the face encodings.
ima2 = get_face_encodings('05.jpg')
上面我们选择了两张附有人脸的图片,并且已经获取到了对应的人脸编码。接着使用compare_faces函数进行人脸比对。
# It's comparing the two face encodings and returning True if they match.
is_same = face_recognition.compare_faces([ima1], ima2, tolerance=0.3)[0]
print('人脸比对结果:{}'.format(is_same))
人脸比对结果:False
这个时候人脸比对结果已经出来了,False代表不一样。这里compare_faces有一个比较重要的参数就是tolerance=0.3,默认情况下是0.6。
tolerance参数的值越小的时候代表比对要求更加严格,因此这个参数的大小需要根据实际情况设置,它会直接影响整个比对过程的结果。
到此这篇关于如何使用python AI快速比对两张人脸图像?的文章就介绍到这了,更多相关python AI快速比对两张人脸图像内容请搜索aitechtogether.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持aitechtogether.com!