【PyTorch 05】神经网络代码结构

content

参考视频:《PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】》

1. 搭建神经网络 torch.nn.Module 的使用

# 作者:要努力,努力,再努力
# 开发时间:2022/5/4 15:24
from torch import nn
import torch


# 搭建神经网络 torch.nn.Module 的使用  nn-> nerual network
class NewNN(nn.Module):  # NewNN 继承了 nn.Module 类(神经网络模板)

    def __init__(self):
        super().__init__()

    def forward(self, input):  # 前向传播,神经网络中还有一个反向传播
        output = input + 1;
        return output


newnn = NewNN()
x = torch.tensor(1.0)
output = newnn(x)
print(output)

2. 卷积操作 nn.functional.Conv2d(二维卷积)

参数说明默认值
input 输入数据
weight 卷积核
bias 偏置
stride步径1
padding间隔0

卷积计算:将对应的位相乘再相加。

1*1+2*2+1*0+0*0+1*1+2*0+2*1+1*2+1*0 = 1+4+0+0+1+0+2+2+0=10

最后会得到3*3的矩阵。

# 作者:要努力,努力,再努力
# 开发时间:2022/5/4 21:35
import torch
import torch.nn.functional as F

# 输入
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

# 卷积核
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

# batch-size = 1 一次训练所选取的样本数
# channel = 1 一次训练所选取的卷积核数
# reshape 将数据二参变四参
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

3. 卷积层(Convolution-Layers) torch.nn.Conv2d

参数说明默认值
 in_channels输入通道数
out_channels输出通道数
kernel_size卷积核大小
stride步径1
padding间隔0
dilation空洞卷积1
# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 10:42
import torch
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets
from torchvision import transforms

datasets = datasets.CIFAR100(root='./dataset', train=False, transform=transforms.ToTensor(),
                             download=True)

dataloader = DataLoader(dataset=datasets, batch_size=64, shuffle=False, num_workers=0, drop_last=False)


class Eccu(nn.Module):
    def __init__(self):
        super(Eccu, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x


eccu = Eccu()
# print(eccu)
writer = SummaryWriter('logs')
step = 0
for data in dataloader:
    imgs, targets = data
    output = eccu(imgs)
    # print(imgs.shape)  # 卷积前 torch.Size([64, 3, 32, 32])
    # print(output.shape)  # 卷积后 torch.Size(torch.Size([64, 6, 30, 30]))
    writer.add_images('input', imgs, step)

    # 因为add_image必须输出的是3个channel,所以对数据需要变换
    # (-1, 3, 30, 30) 第一个batch_size不知道是多少的时候,可以填 -1 ,会根据后面的进行自动变换
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images('output', output, step)

    step += 1

writer.close()

 32 * 32 是如何变成 30*30的:

计算过程:

4. 最大池化(Pooling layers)

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
  • dilation – a parameter that controls the stride of elements in the window
  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later [0]
  • ceil_mode – when True, will use ceil instead of floor to compute the output shape
kernel_size池化核,窗口
stride 步径,默认值为kernel_size
padding边距
dilation 空洞卷积
return_indices 
ceil_mode True,向上取整;False,向下取整。
默认值为False

设 kernel_size = 3,则会生成一个 3*3 的窗口,这个窗口会去对应输入图像,取最大值,步径也等于kernel_size,即也是3,则每次右移和下移都会移动3个位置;当不足3*3=9个数的时候,根据ceil_mode去判断,ceil_mode为True的时候,就直接取最大值,当ceil_mode为false的时候就不取值。

计算过程与上述卷积方法相同。

 池化的应用就相当于:一个1080p的视频,经过池化,降维720p的像素的视频,也能提供大部分需求,资源包大小会有所下降。

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 14:08
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 神经网络——最大池化
class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=False)  # ceil_mode--True,向上取整;False,向下取整。

    def forward(self, input):
        output = self.maxpool(input)
        return output


# 1. 手动输入图像信息
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)  # 1->1.0 变成浮点数
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape)
eccu = Eccu()
output = eccu(input)
print(output)

# 2. 加载图像信息,展示到tensorboard上
dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset=dataset, batch_size=64, shuffle=False, num_workers=0, drop_last=False)
step = 0
writer = SummaryWriter('log_maxpool')
for data in dataloader:
    imgs, targets = data
    writer.add_images('input', imgs, step)
    output = eccu(imgs)  # 因为输出的channel也是3,所以不需要变换
    writer.add_images('output', output, step)
    step += 1

writer.close()

最大池化 tensorboard 可视化(打马赛克我有一手):

5. 非线性激活 Non-linear Activations (weighted sum, nonlinearity 之 nn.ReLu)

inplace – can optionally do the operation in-place. Default: False  是否在原来的位置进行替换。

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 15:46
import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (1, 1, 2, 2))
print(input.shape)


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu = ReLU()

    def forward(self, input):
        output = self.relu(input)
        return output



eccu = Eccu()
output = eccu(input)
print(output)

6. 非线性激活 Non-linear Activations (weighted sum, nonlinearity 之 torch.nn.Sigmoid)

(代码是在上一节的基础上添加的)

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 15:46
import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu = ReLU()
        self.sigmoid = Sigmoid()

    def forward(self, input):
        # output = self.relu(input)
        output = self.sigmoid(input)
        return output


input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (1, 1, 2, 2))
print(input.shape)

dataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=False)
dataloader = DataLoader(dataset=dataset, batch_size=64, shuffle=False, num_workers=0, drop_last=False)

eccu = Eccu()
output = eccu(input)
print(output)

step = 0
writer = SummaryWriter('log_sigmoid')
for data in dataloader:
    imgs, targets = data
    writer.add_images('input', imgs, global_step=step)
    output = eccu(imgs)
    writer.add_images('output', output, global_step=step)
    step += 1

writer.close()

非线性变换的目的:将非线性特征引入网络,提高泛化能力。

 输入数,输出的数据都会处于0-1之间。将输入数据代入到sigmoid函数中,得到一个在这个光滑曲线上的某个点,若该点大于0.5,认为事件的概率为1,小于,则为0

7. 线性层 (Linear Lyers)

Parameters

  • in_features – size of each input sample
  • out_features – size of each output sample
  • bias – If set to False, the layer will not learn an additive bias. Default: True

全连接神经网络:

加不加 b 是由 bias(偏置)来决定的。

g1 就是由 ( k1 * x1 + b1 ) + ( k2 * x2 + b2 ) +  ( k… * x… + b… ) +   ( kd * xd + bd ) 所得到的。

weight 相当于 k .

bias 相当于 b.

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 17:31
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=False)
dataloader = DataLoader(dataset=dataset, batch_size=64, shuffle=False, num_workers=0, drop_last=True) # 丢弃最后的


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = Linear(196608, 10)

    def forward(self, input):
        output = self.linear(input)
        return output


eccu = Eccu()

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)  # torch.Size([64, 3, 32, 32])

    # 将这个图片摊平
    # 1. 将原本是并排的像素,全部变为横向排列,-1 是让他自己计算
    # output = torch.reshape(imgs, (1, 1, 1, -1))
    # 2. torch.flatten
    output = torch.flatten(imgs)
    print(output.shape)
    # reshape:torch.Size([1, 1, 1, 10])  、 flatten:torch.Size([196608])

    # 进入线性神经网络
    output = eccu(output)
    print(output.shape)  # torch.Size([10])  把196608大小进入线性神经网络变为10
    print('========================')

8. 其他层简单介绍

​ Normalization Layers正则化,可以加快神经网络训练速度
Recurrent Layers主要用于文字识别的网络结构
Droupout Layers主要防止过拟合
Sparse Layers做自然语言处理
Distance Function计算误差

torchvision.models 中直接使用,不用构建神经网络:

​ Object Detection目标检测
Instance Segmentation语义分割
Person Keypoint Detection人体结构姿态检测

8. 模型 nn.Sequential

以CIFAR 10 为例:

 CIFAR 10 模型结构

有两种方法可以实现这个神经网络:

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 21:42
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        # 1. 一般方式
        # self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # self.maxpool = MaxPool2d(kernel_size=2)
        # self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # self.maxpool2 = MaxPool2d(kernel_size=2)
        # self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # self.maxpool3 = MaxPool2d(kernel_size=2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024, 64)  # 1024 = 64 * 4 * ; 尝试将 1024 -> 改成 一个随便的数,去看下面的程序会不会报错
        # self.linear2 = Linear(64, 10)

        # 2. Sequential 方式
        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, input):
        # 1. 一般方式
        # output = self.conv1(input)
        # output = self.maxpool(output)
        # output = self.conv2(output)
        # output = self.maxpool2(output)
        # output = self.conv3(output)
        # output = self.maxpool3(output)
        # output = self.flatten(output)  # torch.Size([64, 1024])
        # output = self.linear1(output)
        # output = self.linear2(output)

        # 2. Sequential 方式
        output = self.model1(input)
        return output


eccu = Eccu()
print(eccu)
input = torch.ones((64, 3, 32, 32))  # 检测网络是否有错
output = eccu(input)
print(output.shape)


# 可视化
writer = SummaryWriter('logs_sequential')
writer.add_graph(eccu, input)
writer.close()

tensorboard 上可以显示

如此惊人!

9. 损失函数 和 反向传播

nn.L1Loss(size_average=None, reduce=None, reduction=’mean’)

  • reduction (string, optional) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: ‘mean’

① 计算实际产出与目标的差距

② 为我们更新输出提供一定的依据(反向传播)

CrossEntropyLoss :交叉熵 

# 作者:要努力,努力,再努力
# 开发时间:2022/5/6 8:37
import torch
from torch.nn import L1Loss, MSELoss
from torch import nn

input = torch.tensor([1, 2, 3], dtype=torch.float32)
target = torch.tensor([1, 2, 5], dtype=torch.float32)

input = torch.reshape(input, (1, 1, 1, 3))
target = torch.reshape(target, (1, 1, 1, 3))

loss = L1Loss(reduction='sum')
result = loss(input, target)
print(result)  # 默认: (0+0+2)/3 = 0.666  ; sum : (0+0+2) = 2

lossmse = MSELoss()
resultMse = lossmse(input, target)
print(resultMse)  # (0+0+2^2)/3 = 1.333

x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1,3))
loss_cross = nn.CrossEntropyLoss()
result_loss = loss_cross(x, y)
print(result_loss)

反向传播:尝试如何调整网络过程中的参数才会导致loss变小,梯度grad的理解可以当成“斜率”。

梯度下降

 经过神经网络后,计算交叉熵,并经过反向传播,可以得到梯度grad.

# 作者:要努力,努力,再努力
# 开发时间:2022/5/6 9:14

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 21:42
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential, CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0, drop_last=False)


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, input):
        output = self.model1(input)
        return output

loss = CrossEntropyLoss()


eccu = Eccu()
for data in dataloader:
    imgs, target = data
    output = eccu(imgs)
    # print(output, target)
    # tensor([[ 0.0745,  0.0858, -0.1424, -0.0110,  0.1265, -0.1313, -0.0370, -0.0841, 0.1071, -0.1464]],
    # grad_fn=<AddmmBackward0>) tensor([9])
    # 输出10个类别,每个类别的概率 target为9
    result = loss(output, target)
    result.backward()  # 反向传播
    print(result)

10. 优化器 (torch.optim.SGD)

# 作者:要努力,努力,再努力
# 开发时间:2022/5/6 9:14

# 作者:要努力,努力,再努力
# 开发时间:2022/5/5 21:42
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential, CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0, drop_last=False)


class Eccu(nn.Module):
    def __init__(self):
        super().__init__()
        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, input):
        output = self.model1(input)
        return output

eccu = Eccu()
loss = CrossEntropyLoss()
optims = torch.optim.SGD(eccu.parameters(), lr=0.01)  # 设置优化器。lr = leaning rate 学习速率

for epoch in range(20): # 一般要学习成百上千次
    runing_loss = 0.0
    for data in dataloader:
        imgs, target = data
        output = eccu(imgs)
        # print(output, target)
        # tensor([[ 0.0745,  0.0858, -0.1424, -0.0110,  0.1265, -0.1313, -0.0370, -0.0841, 0.1071, -0.1464]],
        # grad_fn=<AddmmBackward0>) tensor([9])
        # 输出10个类别,每个类别的概率 target为9
        result = loss(output, target)
        optims.zero_grad()  # 必须设置,每一次循环都要将梯度置为零
        result.backward()  # 反向传播,得到梯度
        optims.step()  # 对模型参数调优
        # print(result)
        runing_loss = runing_loss + result  # 整体误差总和
    print(runing_loss)

总误差值

文章出处登录后可见!

已经登录?立即刷新

共计人评分,平均

到目前为止还没有投票!成为第一位评论此文章。

(0)
社会演员多的头像社会演员多普通用户
上一篇 2022年5月7日
下一篇 2022年5月7日

相关推荐

此站出售,如需请站内私信或者邮箱!