YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
- 引言
- 1 环境配置
- 2 数据集准备
- 3 模型训练
- 4 模型预测
引言
源码链接:https://github.com/ultralytics/ultralytics
yolov8和yolov5是同一作者,相比yolov5,yolov8的集成性更好了,更加面向用户了
YOLO命令行界面(command line interface, CLI) 方便在各种任务和版本上训练、验证或推断模型。CLI不需要定制或代码,可以使用yolo命令从终端运行所有任务。
如果想了解yolo系列的更新迭代,以及yolov8的模型结构,推荐下面的链接:
YOLOv8详解 【网络结构+代码+实操】
笔者直接从实操入手
1 环境配置
安装pytorch、torchvision和其他依赖库
环境配置部分可以参考笔者的博客
【YOLO】YOLOv5-6.0环境搭建(不定时更新)
安装ultralytics
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
2 数据集准备
针对检测的数据集准备可以参考笔者的博客,这里不再赘述了
【YOLO】训练自己的数据集
3 模型训练
比起YOLOv5,YOLOv8的训练封装性更好了,有利有弊吧,参数默认值修改比较麻烦
训练指令如下:
yolo task=detect mode=train model=yolov8s.pt data=/media/ll/L/llr/DATASET/subwayDatasets/coco.yaml device=0 cache=True epochs=300 project=/media/ll/L/llr/mode name=yolov8
除了上述笔者使用的参数,其他参数说明
task: detect # 可选择:detect, segment, classify
mode: train #可选择: train, val, predict
# Train settings -------------------------------------------------------------------------------------------------------
model: # 设置模型。格式因任务类型而异。支持model_name, model.yaml,model.pt
data: # 设置数据,支持多数类型 data.yaml, data_folder, dataset_name
epochs: 300 # 需要训练的epoch数
patience: 50 # epochs to wait for no observable improvement for early stopping of training
batch: 16 # Dataloader的batch大小
imgsz: 640 # Dataloader中图像数据的大小
save: True # save train checkpoints and predict results
save_period: -1 # Save checkpoint every x epochs (disabled if < 1)
cache: True # True/ram, disk or False. Use cache for data loading
device: # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8 # 每个进程使用的cpu worker数。使用DDP自动伸缩
project: /media/ll/L/llr/model # project name
name: yolov8 # experiment name
exist_ok: False # whether to overwrite existing experiment
pretrained: False # whether to use a pretrained model
optimizer: SGD # 支持的优化器:Adam, SGD, RMSProp
verbose: True # whether to print verbose output
seed: 0 # random seed for reproducibility
deterministic: True # whether to enable deterministic mode
single_cls: False # 将多类数据作为单类进行训练
image_weights: False # 使用加权图像选择进行训练
rect: False # 启用矩形训练
cos_lr: False # 使用cosine LR调度器
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
resume: False # resume training from last checkpoint
min_memory: False # minimize memory footprint loss function, choices=[False, True, <roll_out_thr>]
# Segmentation
overlap_mask: True # 分割:在训练中使用掩码重叠
mask_ratio: 4 # 分割:设置掩码下采样
# Classification
dropout: 0.0 # 分类:训练时使用dropout
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # validate/test during training
split: val # dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False # save results to JSON file
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
conf: # object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7 # intersection over union (IoU) threshold for NMS
max_det: 300 # maximum number of detections per image
half: False # use half precision (FP16)
dnn: False # 使用OpenCV DNN进行ONNX推断
plots: True # 在验证时保存图像
# Prediction settings --------------------------------------------------------------------------------------------------
source: # 输入源。支持图片、文件夹、视频、网址
show: False # 查看预测图片
save_txt: False # 保存结果到txt文件中
save_conf: False # save results with confidence scores
save_crop: False # save cropped images with results
hide_labels: False # hide labels
hide_conf: False # hide confidence scores
vid_stride: 1 # 输入视频帧率步长
line_thickness: 3 # bounding box thickness (pixels)
visualize: False # 可视化模型特征
augment: False # apply image augmentation to prediction sources
agnostic_nms: False # class-agnostic NMS
classes: # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False #分割:高分辨率掩模
boxes: True # Show boxes in segmentation predictions
# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript # format to export to
keras: False # use Keras
optimize: False # TorchScript: optimize for mobile
int8: False # CoreML/TF INT8 quantization
dynamic: False # ONNX/TF/TensorRT: dynamic axes
simplify: False # ONNX: simplify model
opset: # ONNX: opset version (optional)
workspace: 4 # TensorRT: workspace size (GB)
nms: False # CoreML: add NMS
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # 初始化学习率
lrf: 0.01 # 最终的OneCycleLR学习率
momentum: 0.937 # 作为SGD的momentum和Adam的beta1
weight_decay: 0.0005 # 优化器权重衰减
warmup_epochs: 3.0 # Warmup的epoch数,支持分数)
warmup_momentum: 0.8 # warmup的初始动量
warmup_bias_lr: 0.1 # Warmup的初始偏差lr
box: 7.5 # box loss gain
cls: 0.5 # cls loss gain (scale with pixels)
dfl: 1.5 # dfl loss gain
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
label_smoothing: 0.0 # label smoothing (fraction)
nbs: 64 # nominal batch size
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg: # for overriding defaults.yaml
# Debug, do not modify -------------------------------------------------------------------------------------------------
v5loader: False # use legacy YOLOv5 dataloader
4 模型预测
weight_path = "best.pt" # 自训练的模型
imgdir = r'/media/ll/L/llr/DATASET/subwayDatasets/bjdt/images'
img_path = r'/media/ll/L/llr/DATASET/subwayDatasets/bjdt/images/L_0000018.jpg'
model = YOLO(weight_path)
results = model(img_path,show=False,save=False) # 是否显示和保存结果数据
预测一张图片,results如下图所示:
预测文件夹目录,results如图所示:
无论是一张图片还是图片目录,返回的results都是list
要对预测结果进行处理需要索引进去,如下图所示
结果参数说明:
boxes:各种形式的检测框信息(xyxy、xywh、归一化的)、类别索引、置信度等
names:类别字典
orig_img:原图数组
orig_shape:原图尺寸
plots:在验证时保存图像(预测时一般为None)
speed:处理速度
基于上述模型提供的检测结果进行后处理算法等
上述即为yolov8的快速使用
文章出处登录后可见!
已经登录?立即刷新